Training Deep Learning Models with Norm-Constrained LMOs
- URL: http://arxiv.org/abs/2502.07529v1
- Date: Tue, 11 Feb 2025 13:10:34 GMT
- Title: Training Deep Learning Models with Norm-Constrained LMOs
- Authors: Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, Volkan Cevher,
- Abstract summary: We study optimization methods that leverage the linear minimization oracle (LMO) over a norm-ball.
We propose a new family of algorithms that uses the LMO to adapt to the geometry of the problem and, perhaps surprisingly, show that they can be applied to unconstrained problems.
- Score: 56.00317694850397
- License:
- Abstract: In this work, we study optimization methods that leverage the linear minimization oracle (LMO) over a norm-ball. We propose a new stochastic family of algorithms that uses the LMO to adapt to the geometry of the problem and, perhaps surprisingly, show that they can be applied to unconstrained problems. The resulting update rule unifies several existing optimization methods under a single framework. Furthermore, we propose an explicit choice of norm for deep architectures, which, as a side benefit, leads to the transferability of hyperparameters across model sizes. Experimentally, we demonstrate significant speedups on nanoGPT training without any reliance on Adam. The proposed method is memory-efficient, requiring only one set of model weights and one set of gradients, which can be stored in half-precision.
Related papers
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.
Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.
We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - Go With the Flow: Fast Diffusion for Gaussian Mixture Models [13.03355083378673]
Schr"odinger Bridges (SB) are diffusion processes that steer, in finite time, a given initial distribution to another final one while minimizing a suitable cost functional.
We propose latentmetrization of a set of SB policies for steering a system from one distribution to another.
We showcase the potential this approach in low-to-dimensional problems such as image-to-image translation in the space of an autoencoder.
arXiv Detail & Related papers (2024-12-12T08:40:22Z) - Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - Model-based RL as a Minimalist Approach to Horizon-Free and Second-Order Bounds [59.875550175217874]
We show that a simple Model-based Reinforcement Learning scheme achieves strong regret and sample bounds in online and offline RL settings.
We highlight that our algorithms are simple, fairly standard, and indeed have been extensively studied in the RL literature.
arXiv Detail & Related papers (2024-08-16T19:52:53Z) - A Two-Stage Training Method for Modeling Constrained Systems With Neural
Networks [3.072340427031969]
This paper describes in detail the two-stage training method for Neural ODEs.
The first stage aims at finding feasible NN parameters by minimizing a measure of constraints violation.
The second stage aims to find the optimal NN parameters by minimizing the loss function while keeping inside the feasible region.
arXiv Detail & Related papers (2024-03-05T07:37:47Z) - MAST: Model-Agnostic Sparsified Training [4.962431253126472]
We introduce a novel optimization problem formulation that departs from the conventional way of minimizing machine learning model loss as a black-box function.
Unlike traditional formulations, the proposed approach explicitly incorporates an initially pre-trained model and random sketch operators.
We present several variants of the Gradient Descent (SGD) method adapted to the new problem formulation.
arXiv Detail & Related papers (2023-11-27T18:56:03Z) - Improving generalization in large language models by learning prefix
subspaces [5.911540700785975]
This article focuses on large language models (LLMs) fine-tuning in the scarce data regime (also known as the "few-shot" learning setting)
We propose a method to increase the generalization capabilities of LLMs based on neural network subspaces.
arXiv Detail & Related papers (2023-10-24T12:44:09Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - An Adaptive Incremental Gradient Method With Support for Non-Euclidean
Norms [19.41328109094503]
We propose and analyze several novel adaptive variants of the popular SAGA algorithm.
We establish its convergence guarantees under general settings.
We improve the analysis of SAGA to support non-Euclidean norms.
arXiv Detail & Related papers (2022-04-28T09:43:07Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.