Unsupervised Translation of Emergent Communication
- URL: http://arxiv.org/abs/2502.07552v1
- Date: Tue, 11 Feb 2025 13:41:06 GMT
- Title: Unsupervised Translation of Emergent Communication
- Authors: Ido Levy, Orr Paradise, Boaz Carmeli, Ron Meir, Shafi Goldwasser, Yonatan Belinkov,
- Abstract summary: Emergent Communication (EC) provides a unique window into the language systems that emerge autonomously when agents are trained to jointly achieve shared goals.
It is difficult to interpret EC and evaluate its relationship with natural languages (NL)
This study employs unsupervised neural machine translation (UNMT) techniques to decipher ECs formed during referential games with varying task complexities.
- Score: 38.568833616624644
- License:
- Abstract: Emergent Communication (EC) provides a unique window into the language systems that emerge autonomously when agents are trained to jointly achieve shared goals. However, it is difficult to interpret EC and evaluate its relationship with natural languages (NL). This study employs unsupervised neural machine translation (UNMT) techniques to decipher ECs formed during referential games with varying task complexities, influenced by the semantic diversity of the environment. Our findings demonstrate UNMT's potential to translate EC, illustrating that task complexity characterized by semantic diversity enhances EC translatability, while higher task complexity with constrained semantic variability exhibits pragmatic EC, which, although challenging to interpret, remains suitable for translation. This research marks the first attempt, to our knowledge, to translate EC without the aid of parallel data.
Related papers
- Enhancing Code-Switching Speech Recognition with LID-Based Collaborative Mixture of Experts Model [12.030995417911296]
This study proposes a Collaborative-MoE, a Mixture of Experts (MoE) model that leverages a collaborative mechanism among expert groups.
Within each language expert group, a gating network operates unsupervised to foster collaboration on attributes beyond language.
Our method preserves the efficient inference capabilities characteristic of MoE models without necessitating additional pre-training.
arXiv Detail & Related papers (2024-09-03T16:53:38Z) - Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency [59.15544887307901]
Image semantic communication (ISC) has garnered significant attention for its potential to achieve high efficiency in visual content transmission.
Existing ISC systems based on joint source-channel coding face challenges in interpretability, operability, and compatibility.
We propose a novel trustworthy ISC framework that employs Generative Artificial Intelligence (GenAI) for multiple downstream inference tasks.
arXiv Detail & Related papers (2024-08-07T14:32:36Z) - Shiftable Context: Addressing Training-Inference Context Mismatch in
Simultaneous Speech Translation [0.17188280334580192]
Transformer models using segment-based processing have been an effective architecture for simultaneous speech translation.
We propose Shiftable Context to ensure consistent segment and context sizes are maintained throughout training and inference.
arXiv Detail & Related papers (2023-07-03T22:11:51Z) - Semantic-aware Contrastive Learning for Electroencephalography-to-Text
Generation with Curriculum Learning [28.76185264077582]
We propose a Curriculum Semantic-aware Contrastive Learning strategy (C-SCL) for EEG-to-Text generation.
C-SCL pulls semantically similar EEG representations together while pushing apart dissimilar ones.
Our method shows stable improvements across three types of metrics while achieving the new state-of-the-art.
arXiv Detail & Related papers (2023-01-23T00:54:48Z) - Evaluating Multilingual Text Encoders for Unsupervised Cross-Lingual
Retrieval [51.60862829942932]
We present a systematic empirical study focused on the suitability of the state-of-the-art multilingual encoders for cross-lingual document and sentence retrieval tasks.
For sentence-level CLIR, we demonstrate that state-of-the-art performance can be achieved.
However, the peak performance is not met using the general-purpose multilingual text encoders off-the-shelf', but rather relying on their variants that have been further specialized for sentence understanding tasks.
arXiv Detail & Related papers (2021-01-21T00:15:38Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
We propose a novel contrastive learning framework named ERICA in pre-training phase to obtain a deeper understanding of the entities and their relations in text.
Experimental results demonstrate that our proposed ERICA framework achieves consistent improvements on several document-level language understanding tasks.
arXiv Detail & Related papers (2020-12-30T03:35:22Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
We plug a cross-attention module into the Transformer encoder to explicitly build the interdependence between languages.
It can effectively avoid the degeneration of predicting masked words only conditioned on the context in its own language.
The proposed cross-lingual model delivers new state-of-the-art results on various cross-lingual understanding tasks of the XTREME benchmark.
arXiv Detail & Related papers (2020-10-30T03:41:38Z) - Uncertainty-Aware Semantic Augmentation for Neural Machine Translation [37.555675157198145]
We propose uncertainty-aware semantic augmentation, which explicitly captures the universal semantic information among multiple semantically-equivalent source sentences.
Our approach significantly outperforms the strong baselines and the existing methods.
arXiv Detail & Related papers (2020-10-09T07:48:09Z) - It's Easier to Translate out of English than into it: Measuring Neural
Translation Difficulty by Cross-Mutual Information [90.35685796083563]
Cross-mutual information (XMI) is an asymmetric information-theoretic metric of machine translation difficulty.
XMI exploits the probabilistic nature of most neural machine translation models.
We present the first systematic and controlled study of cross-lingual translation difficulties using modern neural translation systems.
arXiv Detail & Related papers (2020-05-05T17:38:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.