Attention Learning is Needed to Efficiently Learn Parity Function
- URL: http://arxiv.org/abs/2502.07553v1
- Date: Tue, 11 Feb 2025 13:41:30 GMT
- Title: Attention Learning is Needed to Efficiently Learn Parity Function
- Authors: Yaomengxi Han, Debarghya Ghoshdastidar,
- Abstract summary: We analyze transformers on the $k$-parity problem.
We prove that transformers require only $O(k)$ parameters, surpassing the theoretical lower bound needed by FFNNs.
- Score: 6.944372188747803
- License:
- Abstract: Transformers, with their attention mechanisms, have emerged as the state-of-the-art architectures of sequential modeling and empirically outperform feed-forward neural networks (FFNNs) across many fields, such as natural language processing and computer vision. However, their generalization ability, particularly for low-sensitivity functions, remains less studied. We bridge this gap by analyzing transformers on the $k$-parity problem. Daniely and Malach (NeurIPS 2020) show that FFNNs with one hidden layer and $O(nk^7 \log k)$ parameters can learn $k$-parity, where the input length $n$ is typically much larger than $k$. In this paper, we prove that FFNNs require at least $\Omega(n)$ parameters to learn $k$-parity, while transformers require only $O(k)$ parameters, surpassing the theoretical lower bound needed by FFNNs. We further prove that this parameter efficiency cannot be achieved with fixed attention heads. Our work establishes transformers as theoretically superior to FFNNs in learning parity function, showing how their attention mechanisms enable parameter-efficient generalization in functions with low sensitivity.
Related papers
- Optimal Memorization Capacity of Transformers [32.01426831450348]
We show that Transformers can memorize labels with $tildeO(sqrtN)$ parameters in a next-token prediction setting for $N$ input sequences of length $n$.
We also analyze the memorization capacity in the sequence-to-sequence setting, and find that $tildeO(sqrtnN)$ parameters are not only sufficient, but also necessary for Transformers with hardmax.
arXiv Detail & Related papers (2024-09-26T09:36:47Z) - Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers [54.20763128054692]
We study how a two-attention-layer transformer is trained to perform ICL on $n$-gram Markov chain data.
We prove that the gradient flow with respect to a cross-entropy ICL loss converges to a limiting model.
arXiv Detail & Related papers (2024-09-09T18:10:26Z) - Aligning Transformers with Weisfeiler-Leman [5.0452971570315235]
Graph neural network architectures aligned with the $k$-WL hierarchy offer theoretically well-understood expressive power.
We develop a theoretical framework that allows the study of established positional encodings such as Laplacian PEs and SPE.
We evaluate our transformers on the large-scale PCQM4Mv2 dataset, showing competitive predictive performance with the state-of-the-art.
arXiv Detail & Related papers (2024-06-05T11:06:33Z) - p-Laplacian Transformer [7.2541371193810384]
$p$-Laplacian regularization, rooted in graph and image signal processing, introduces a parameter $p$ to control the regularization effect on these data.
We first show that the self-attention mechanism obtains the minimal Laplacian regularization.
We then propose a novel class of transformers, namely the $p$-Laplacian Transformer (p-LaT)
arXiv Detail & Related papers (2023-11-06T16:25:56Z) - Sparse Universal Transformer [64.78045820484299]
The Universal Transformer (UT) is a variant of the Transformer that shares parameters across its layers.
This paper proposes the Sparse Universal Transformer (SUT), which leverages Sparse Mixture of Experts (SMoE) and a new stick-breaking-based dynamic halting mechanism.
arXiv Detail & Related papers (2023-10-11T00:38:57Z) - Transformers as Support Vector Machines [54.642793677472724]
We establish a formal equivalence between the optimization geometry of self-attention and a hard-margin SVM problem.
We characterize the implicit bias of 1-layer transformers optimized with gradient descent.
We believe these findings inspire the interpretation of transformers as a hierarchy of SVMs that separates and selects optimal tokens.
arXiv Detail & Related papers (2023-08-31T17:57:50Z) - Parameterization of Cross-Token Relations with Relative Positional
Encoding for Vision MLP [52.25478388220691]
Vision multi-layer perceptrons (MLPs) have shown promising performance in computer vision tasks.
They use token-mixing layers to capture cross-token interactions, as opposed to the multi-head self-attention mechanism used by Transformers.
We propose a new positional spacial gating unit (PoSGU) to efficiently encode the cross-token relations for token mixing.
arXiv Detail & Related papers (2022-07-15T04:18:06Z) - Stable, Fast and Accurate: Kernelized Attention with Relative Positional
Encoding [63.539333383965726]
We propose a novel way to accelerate attention calculation for Transformers with relative positional encoding (RPE)
Based upon the observation that relative positional encoding forms a Toeplitz matrix, we mathematically show that kernelized attention with RPE can be calculated efficiently using Fast Fourier Transform (FFT)
arXiv Detail & Related papers (2021-06-23T17:51:26Z) - NullaNet Tiny: Ultra-low-latency DNN Inference Through Fixed-function
Combinational Logic [4.119948826527649]
Field-programmable gate array (FPGA)-based accelerators are gaining traction as a serious contender to replace graphics processing unit/central processing unit-based platforms.
This paper presents NullaNet Tiny, a framework for constructing resource and energy-efficient, ultra-low-latency FPGA-based neural network accelerators.
arXiv Detail & Related papers (2021-04-07T00:16:39Z) - $O(n)$ Connections are Expressive Enough: Universal Approximability of
Sparse Transformers [71.31712741938837]
We show that sparse Transformers with only $O(n)$ connections per attention layer can approximate the same function class as the dense model with $n2$ connections.
We also present experiments comparing different patterns/levels of sparsity on standard NLP tasks.
arXiv Detail & Related papers (2020-06-08T18:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.