Partial-Label Learning with Conformal Candidate Cleaning
- URL: http://arxiv.org/abs/2502.07661v1
- Date: Tue, 11 Feb 2025 15:51:23 GMT
- Title: Partial-Label Learning with Conformal Candidate Cleaning
- Authors: Tobias Fuchs, Florian Kalinke,
- Abstract summary: This article proposes a novel enhancing method that incrementally prunes candidate sets using conformal prediction.
We establish that our pruning method preserves the conformal validity with respect to the unknown ground truth.
- Score: 0.0
- License:
- Abstract: Real-world data is often ambiguous; for example, human annotation produces instances with multiple conflicting class labels. Partial-label learning (PLL) aims at training a classifier in this challenging setting, where each instance is associated with a set of candidate labels and one correct, but unknown, class label. A multitude of algorithms targeting this setting exists and, to enhance their prediction quality, several extensions that are applicable across a wide range of PLL methods have been introduced. While many of these extensions rely on heuristics, this article proposes a novel enhancing method that incrementally prunes candidate sets using conformal prediction. To work around the missing labeled validation set, which is typically required for conformal prediction, we propose a strategy that alternates between training a PLL classifier to label the validation set, leveraging these predicted class labels for calibration, and pruning candidate labels that are not part of the resulting conformal sets. In this sense, our method alternates between empirical risk minimization and candidate set pruning. We establish that our pruning method preserves the conformal validity with respect to the unknown ground truth. Our extensive experiments on artificial and real-world data show that the proposed approach significantly improves the test set accuracies of several state-of-the-art PLL classifiers.
Related papers
- Determined Multi-Label Learning via Similarity-Based Prompt [12.428779617221366]
In multi-label classification, each training instance is associated with multiple class labels simultaneously.
To alleviate this problem, a novel labeling setting termed textitDetermined Multi-Label Learning (DMLL) is proposed.
arXiv Detail & Related papers (2024-03-25T07:08:01Z) - Appeal: Allow Mislabeled Samples the Chance to be Rectified in Partial Label Learning [55.4510979153023]
In partial label learning (PLL), each instance is associated with a set of candidate labels among which only one is ground-truth.
To help these mislabeled samples "appeal," we propose the first appeal-based framework.
arXiv Detail & Related papers (2023-12-18T09:09:52Z) - Complementary Classifier Induced Partial Label Learning [54.61668156386079]
In partial label learning (PLL), each training sample is associated with a set of candidate labels, among which only one is valid.
In disambiguation, the existing works usually do not fully investigate the effectiveness of the non-candidate label set.
In this paper, we use the non-candidate labels to induce a complementary classifier, which naturally forms an adversarial relationship against the traditional classifier.
arXiv Detail & Related papers (2023-05-17T02:13:23Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - Complementary Labels Learning with Augmented Classes [22.460256396941528]
Complementary Labels Learning (CLL) arises in many real-world tasks such as private questions classification and online learning.
We propose a novel problem setting called Complementary Labels Learning with Augmented Classes (CLLAC)
By using unlabeled data, we propose an unbiased estimator of classification risk for CLLAC, which is guaranteed to be provably consistent.
arXiv Detail & Related papers (2022-11-19T13:55:27Z) - Decomposition-based Generation Process for Instance-Dependent Partial
Label Learning [45.133781119468836]
Partial label learning (PLL) is a typical weakly supervised learning problem, where each training example is associated with a set of candidate labels among which only one is true.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels and model the generation process of the candidate labels in a simple way.
We propose Maximum A Posterior(MAP) based on an explicitly modeled generation process of candidate labels.
arXiv Detail & Related papers (2022-04-08T05:18:51Z) - Learning with Proper Partial Labels [87.65718705642819]
Partial-label learning is a kind of weakly-supervised learning with inexact labels.
We show that this proper partial-label learning framework includes many previous partial-label learning settings.
We then derive a unified unbiased estimator of the classification risk.
arXiv Detail & Related papers (2021-12-23T01:37:03Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
Partial label learning is a typical weakly supervised learning problem.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels.
In this paper, we consider instance-dependent and assume that each example is associated with a latent label distribution constituted by the real number of each label.
arXiv Detail & Related papers (2021-10-25T12:50:26Z) - Provably Consistent Partial-Label Learning [120.4734093544867]
Partial-label learning (PLL) is a multi-class classification problem, where each training example is associated with a set of candidate labels.
In this paper, we propose the first generation model of candidate label sets, and develop two novel methods that are guaranteed to be consistent.
Experiments on benchmark and real-world datasets validate the effectiveness of the proposed generation model and two methods.
arXiv Detail & Related papers (2020-07-17T12:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.