ReTreever: Tree-based Coarse-to-Fine Representations for Retrieval
- URL: http://arxiv.org/abs/2502.07971v1
- Date: Tue, 11 Feb 2025 21:35:13 GMT
- Title: ReTreever: Tree-based Coarse-to-Fine Representations for Retrieval
- Authors: Shubham Gupta, Zichao Li, Tianyi Chen, Cem Subakan, Siva Reddy, Perouz Taslakian, Valentina Zantedeschi,
- Abstract summary: We propose a tree-based method for organizing and representing reference documents at various granular levels.
Our method, called ReTreever, jointly learns a routing function per internal node of a binary tree such that query and reference documents are assigned to similar tree branches.
Our evaluations show that ReTreever generally preserves full representation accuracy.
- Score: 64.44265315244579
- License:
- Abstract: Document retrieval is a core component of question-answering systems, as it enables conditioning answer generation on new and large-scale corpora. While effective, the standard practice of encoding documents into high-dimensional embeddings for similarity search entails large memory and compute footprints, and also makes it hard to inspect the inner workings of the system. In this paper, we propose a tree-based method for organizing and representing reference documents at various granular levels, which offers the flexibility to balance cost and utility, and eases the inspection of the corpus content and retrieval operations. Our method, called ReTreever, jointly learns a routing function per internal node of a binary tree such that query and reference documents are assigned to similar tree branches, hence directly optimizing for retrieval performance. Our evaluations show that ReTreever generally preserves full representation accuracy. Its hierarchical structure further provides strong coarse representations and enhances transparency by indirectly learning meaningful semantic groupings. Among hierarchical retrieval methods, ReTreever achieves the best retrieval accuracy at the lowest latency, proving that this family of techniques can be viable in practical applications.
Related papers
- Learning More Effective Representations for Dense Retrieval through Deliberate Thinking Before Search [65.53881294642451]
Deliberate Thinking based Dense Retriever (DEBATER)
DEBATER enhances recent dense retrievers by enabling them to learn more effective document representations through a step-by-step thinking process.
Experimental results show that DEBATER significantly outperforms existing methods across several retrieval benchmarks.
arXiv Detail & Related papers (2025-02-18T15:56:34Z) - Ranking Narrative Query Graphs for Biomedical Document Retrieval (Technical Report) [7.527096697768715]
This paper extends our existing graph-based discovery system for the biomedical domain.
It contributes effective graph-based unsupervised ranking methods, a new query relaxation paradigm, and ontological rewriting.
arXiv Detail & Related papers (2024-12-06T12:49:28Z) - Generative Retrieval as Multi-Vector Dense Retrieval [71.75503049199897]
Generative retrieval generates identifiers of relevant documents in an end-to-end manner.
Prior work has demonstrated that generative retrieval with atomic identifiers is equivalent to single-vector dense retrieval.
We show that generative retrieval and multi-vector dense retrieval share the same framework for measuring the relevance to a query of a document.
arXiv Detail & Related papers (2024-03-31T13:29:43Z) - RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval [26.527911244587134]
We introduce the novel approach of embedding, clustering, and summarizing chunks of text, constructing a tree with differing levels of summarization from the bottom up.
At inference time, our RAPTOR model retrieves from this tree, integrating information across lengthy documents at different levels of abstraction.
arXiv Detail & Related papers (2024-01-31T18:30:21Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
Large-scale retrieval is to recall relevant documents from a huge collection given a query.
Recent retrieval methods based on pre-trained language models (PLM) can be coarsely categorized into either dense-vector or lexicon-based paradigms.
We propose a new learning framework, UnifieR which unifies dense-vector and lexicon-based retrieval in one model with a dual-representing capability.
arXiv Detail & Related papers (2022-05-23T11:01:59Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
We present a framework for improving the performance of a wide class of retrieval models at minimal computational cost.
It utilizes precomputed document representations extracted by a base dense retrieval method.
It incurs a negligible computational overhead on top of any first-stage method at run time, allowing it to be easily combined with any state-of-the-art dense retrieval method.
arXiv Detail & Related papers (2021-12-16T10:25:26Z) - Context-aware Tree-based Deep Model for Recommender Systems [22.537595224145356]
In tree-based methods, a tree structure T is adopted as index and each item in corpus is attached to a leaf node on T.
In this paper, we argue that the tree index used to support efficient retrieval in tree-based methods also has rich hierarchical information about the corpus.
We propose a novel context-aware tree-based deep model (ConTDM) for recommender systems.
arXiv Detail & Related papers (2021-09-22T09:06:36Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval.
ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels.
Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism.
arXiv Detail & Related papers (2021-08-30T18:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.