What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Inverse Power Error or Inverse Power Estimation?
- URL: http://arxiv.org/abs/2502.07993v1
- Date: Tue, 11 Feb 2025 22:19:56 GMT
- Title: What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Inverse Power Error or Inverse Power Estimation?
- Authors: Ruihan Xu, Yiping Lu,
- Abstract summary: We develop a sketch-and-precondition framework for randomized algorithms in low- rank matrix approximation.
Our method achieves theoretical guarantees, including a convergence rate that improves at least linearly with the sketch size.
- Score: 3.817486368952521
- License:
- Abstract: Randomized sketching accelerates large-scale numerical linear algebra by reducing computa- tional complexity. While the traditional sketch-and-solve approach reduces the problem size di- rectly through sketching, the sketch-and-precondition method leverages sketching to construct a computational friendly preconditioner. This preconditioner improves the convergence speed of iterative solvers applied to the original problem, maintaining accuracy in the full space. Further- more, the convergence rate of the solver improves at least linearly with the sketch size. Despite its potential, developing a sketch-and-precondition framework for randomized algorithms in low- rank matrix approximation remains an open challenge. We introduce the Error-Powered Sketched Inverse Iteration (EPSI) Method via run sketched Newton iteration for the Lagrange form as a sketch-and-precondition variant for randomized low-rank approximation. Our method achieves theoretical guarantees, including a convergence rate that improves at least linearly with the sketch size.
Related papers
- Sketching for Convex and Nonconvex Regularized Least Squares with Sharp
Guarantees [23.614074988517864]
In this paper, we propose a fast approximation for least square problems regularized by or convex non regularization functions.
Results are among the first to demonstrate minimax rates for estimation by solving sketched convex or non approximation problems.
arXiv Detail & Related papers (2023-11-03T09:35:01Z) - Sharp Analysis of Sketch-and-Project Methods via a Connection to
Randomized Singular Value Decomposition [14.453949553412821]
We develop a theoretical framework for obtaining sharp guarantees on the convergence rate of sketch-and-project methods.
We show that the convergence rate improves at least linearly with the sketch size, and even faster when the data matrix exhibits certain spectral decays.
Our experiments support the theory and demonstrate that even extremely sparse sketches exhibit the convergence properties predicted by our framework.
arXiv Detail & Related papers (2022-08-20T03:11:13Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
We consider distributed optimization methods for problems where forming the Hessian is computationally challenging.
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
arXiv Detail & Related papers (2022-03-18T05:49:13Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Newton-LESS: Sparsification without Trade-offs for the Sketched Newton
Update [88.73437209862891]
In second-order optimization, a potential bottleneck can be computing the Hessian matrix of the optimized function at every iteration.
We show that the Gaussian sketching matrix can be drastically sparsified, significantly reducing the computational cost of sketching.
We prove that Newton-LESS enjoys nearly the same problem-independent local convergence rate as Gaussian embeddings.
arXiv Detail & Related papers (2021-07-15T17:33:05Z) - Fast Convex Quadratic Optimization Solvers with Adaptive Sketching-based
Preconditioners [37.03247707259297]
We consider least-squares problems with quadratic regularization and propose novel sketching-based iterative methods with an adaptive sketch size.
The sketch size can be as small as the effective dimension of the data matrix to guarantee linear convergence.
A major difficulty in choosing the sketch size in terms of the effective dimension lies in the fact that the latter is usually unknown in practice.
arXiv Detail & Related papers (2021-04-29T04:36:41Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.