Adaptive kernel predictors from feature-learning infinite limits of neural networks
- URL: http://arxiv.org/abs/2502.07998v1
- Date: Tue, 11 Feb 2025 22:34:49 GMT
- Title: Adaptive kernel predictors from feature-learning infinite limits of neural networks
- Authors: Clarissa Lauditi, Blake Bordelon, Cengiz Pehlevan,
- Abstract summary: We show that neural networks trained in the rich, feature learning infinite-width regime are also described by kernel machines.
We provide explicit expressions for the kernel predictors and prescriptions to numerically calculate them.
- Score: 35.95321041944522
- License:
- Abstract: Previous influential work showed that infinite width limits of neural networks in the lazy training regime are described by kernel machines. Here, we show that neural networks trained in the rich, feature learning infinite-width regime in two different settings are also described by kernel machines, but with data-dependent kernels. For both cases, we provide explicit expressions for the kernel predictors and prescriptions to numerically calculate them. To derive the first predictor, we study the large-width limit of feature-learning Bayesian networks, showing how feature learning leads to task-relevant adaptation of layer kernels and preactivation densities. The saddle point equations governing this limit result in a min-max optimization problem that defines the kernel predictor. To derive the second predictor, we study gradient flow training of randomly initialized networks trained with weight decay in the infinite-width limit using dynamical mean field theory (DMFT). The fixed point equations of the arising DMFT defines the task-adapted internal representations and the kernel predictor. We compare our kernel predictors to kernels derived from lazy regime and demonstrate that our adaptive kernels achieve lower test loss on benchmark datasets.
Related papers
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
This paper presents two models of neural-networks and their training applicable to neural networks of arbitrary width, depth and topology.
We also present an exact novel representor theory for layer-wise neural network training with unregularized gradient descent in terms of a local-extrinsic neural kernel (LeNK)
This representor theory gives insight into the role of higher-order statistics in neural network training and the effect of kernel evolution in neural-network kernel models.
arXiv Detail & Related papers (2024-05-24T06:30:36Z) - Efficient kernel surrogates for neural network-based regression [0.8030359871216615]
We study the performance of the Conjugate Kernel (CK), an efficient approximation to the Neural Tangent Kernel (NTK)
We show that the CK performance is only marginally worse than that of the NTK and, in certain cases, is shown to be superior.
In addition to providing a theoretical grounding for using CKs instead of NTKs, our framework suggests a recipe for improving DNN accuracy inexpensively.
arXiv Detail & Related papers (2023-10-28T06:41:47Z) - An Exact Kernel Equivalence for Finite Classification Models [1.4777718769290527]
We compare our exact representation to the well-known Neural Tangent Kernel (NTK) and discuss approximation error relative to the NTK.
We use this exact kernel to show that our theoretical contribution can provide useful insights into the predictions made by neural networks.
arXiv Detail & Related papers (2023-08-01T20:22:53Z) - Speed Limits for Deep Learning [67.69149326107103]
Recent advancement in thermodynamics allows bounding the speed at which one can go from the initial weight distribution to the final distribution of the fully trained network.
We provide analytical expressions for these speed limits for linear and linearizable neural networks.
Remarkably, given some plausible scaling assumptions on the NTK spectra and spectral decomposition of the labels -- learning is optimal in a scaling sense.
arXiv Detail & Related papers (2023-07-27T06:59:46Z) - Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean
Field Neural Networks [47.73646927060476]
We analyze the dynamics of finite width effects in wide but finite feature learning neural networks.
Our results are non-perturbative in the strength of feature learning.
arXiv Detail & Related papers (2023-04-06T23:11:49Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide
Neural Networks [18.27510863075184]
We analyze feature learning in infinite width neural networks trained with gradient flow through a self-consistent dynamical field theory.
We construct a collection of deterministic dynamical order parameters which are inner-product kernels for hidden unit activations and gradients in each layer at pairs of time points.
arXiv Detail & Related papers (2022-05-19T16:10:10Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Classifying high-dimensional Gaussian mixtures: Where kernel methods
fail and neural networks succeed [27.38015169185521]
We show theoretically that two-layer neural networks (2LNN) with only a few hidden neurons can beat the performance of kernel learning.
We show how over-parametrising the neural network leads to faster convergence, but does not improve its final performance.
arXiv Detail & Related papers (2021-02-23T15:10:15Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.