Franken-Adapter: Cross-Lingual Adaptation of LLMs by Embedding Surgery
- URL: http://arxiv.org/abs/2502.08037v1
- Date: Wed, 12 Feb 2025 00:38:11 GMT
- Title: Franken-Adapter: Cross-Lingual Adaptation of LLMs by Embedding Surgery
- Authors: Fan Jiang, Honglin Yu, Grace Chung, Trevor Cohn,
- Abstract summary: We present $textitFranken-Adapter$, a modular language adaptation approach for decoder-only Large Language Models.
Our method begins by creating customized vocabularies for target languages and performing language adaptation through embedding tuning on multilingual data.
Experiments on $ttGemma2$ models with up to 27B parameters demonstrate improvements of up to 20% across 96 languages, spanning both discriminative and generative tasks.
- Score: 31.516243610548635
- License:
- Abstract: The capabilities of Large Language Models (LLMs) in low-resource languages lag far behind those in English, making their universal accessibility a significant challenge. To alleviate this, we present $\textit{Franken-Adapter}$, a modular language adaptation approach for decoder-only LLMs with embedding surgery. Our method begins by creating customized vocabularies for target languages and performing language adaptation through embedding tuning on multilingual data. These pre-trained embeddings are subsequently integrated with LLMs that have been instruction-tuned on English alignment data to enable zero-shot cross-lingual transfer. Our experiments on $\texttt{Gemma2}$ models with up to 27B parameters demonstrate improvements of up to 20% across 96 languages, spanning both discriminative and generative tasks, with minimal regressions ($<$1%) in English. Further in-depth analysis reveals the critical role of customizing tokenizers in enhancing language adaptation, while boosting inference efficiency. Additionally, we show the versatility of our method by achieving a 14% improvement over a math-optimized LLM across 20 languages, offering a modular solution to transfer reasoning abilities across languages post hoc.
Related papers
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lens is a novel approach to enhance multilingual capabilities of large language models (LLMs)
It operates by manipulating the hidden representations within the language-agnostic and language-specific subspaces from top layers of LLMs.
It achieves superior results with much fewer computational resources compared to existing post-training approaches.
arXiv Detail & Related papers (2024-10-06T08:51:30Z) - Bridging the Language Gap: Enhancing Multilingual Prompt-Based Code Generation in LLMs via Zero-Shot Cross-Lingual Transfer [5.355430735475281]
This paper investigates the complexities of multilingual prompt-based code generation.
Our evaluations reveal significant disparities in code quality for non-English prompts.
We propose a zero-shot cross-lingual approach using a neural projection technique.
arXiv Detail & Related papers (2024-08-19T05:11:46Z) - RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs [13.563021984882704]
We introduce a novel, scalable method for generating high-quality multilingual feedback data.
Our preference-trained model achieves a 54.4% win-rate against Aya 23 8B.
As a result of our study, we expand the frontier of alignment techniques to 23 languages covering half of the world's population.
arXiv Detail & Related papers (2024-07-02T17:42:30Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - TaCo: Enhancing Cross-Lingual Transfer for Low-Resource Languages in LLMs through Translation-Assisted Chain-of-Thought Processes [9.254047358707014]
We introduce the Multilingual Instruction-Tuning dataset (MITS), comprised of Alpaca-52K, Dolly-15K, and Vicuna Benchmark translations into 132 languages.
Secondly, we propose a new method called emphTaCo: Translation-Assisted Cross-Linguality, which utilizes translations in a chain-of-thought process to instruction-tune LLMs on new languages through a curriculum-learning process.
Our results indicate that the TaCo method impresses GPT-4 with an 82% score for a low-resource language in the Vicuna Benchmark dataset, doubling the performance in contrast to instruction tuning
arXiv Detail & Related papers (2023-11-17T06:55:32Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
This research examines vocabulary trimming (VT) inspired by restricting embedding entries to the language of interest to bolster time and memory efficiency.
We apply two languages to trim the full vocabulary - Unicode-based script filtering and corpus-based selection - to different language families and sizes.
It is found that VT reduces the memory usage of small models by nearly 50% and has an upper bound of 25% improvement in generation speed.
arXiv Detail & Related papers (2023-11-16T09:35:50Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Romanization-based Large-scale Adaptation of Multilingual Language
Models [124.57923286144515]
Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP.
We study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages.
Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups.
arXiv Detail & Related papers (2023-04-18T09:58:34Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.