WorldGUI: An Interactive Benchmark for Desktop GUI Automation from Any Starting Point
- URL: http://arxiv.org/abs/2502.08047v3
- Date: Mon, 09 Jun 2025 06:58:38 GMT
- Title: WorldGUI: An Interactive Benchmark for Desktop GUI Automation from Any Starting Point
- Authors: Henry Hengyuan Zhao, Kaiming Yang, Wendi Yu, Difei Gao, Mike Zheng Shou,
- Abstract summary: We introduce WorldGUI, a comprehensive GUI benchmark containing tasks across ten widely used desktop and web applications.<n>WorldGUI-Agent is a universal framework that unifies three core modules: Planner-Critic for high-level plan refinement, Step-Check for intermediate verification, and Actor-Critic for action-level optimization.
- Score: 17.165899818213475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: GUI agents have achieved outstanding performance in GUI element grounding. However, planning remains highly challenging, especially due to the sensitivity to the initial state of the environment. Specifically, slight differences in the initial state-such as the target software not being open or the interface not being in its default state, often lead to planning errors. This issue is widespread in real application scenarios, but existing benchmarks fail to evaluate it. To address this gap, we introduce WorldGUI, a comprehensive GUI benchmark containing tasks across ten widely used desktop and web applications (e.g., PowerPoint, VSCode, Acrobat), each instantiated with diverse initial states to simulate authentic human-computer interactions. Complementing this, we propose WorldGUI-Agent, a universal framework that unifies three core modules: Planner-Critic for high-level plan refinement, Step-Check for intermediate verification, and Actor-Critic for action-level optimization to proactively detect and correct errors. Experimental evaluation shows that WorldGUI-Agent outperforms the outstanding existing model (Claude-3.5 Computer Use) by 12.4% in success rate on WorldGUI, and achieves a 31.2% overall success rate on WindowsAgentArena, surpassing the prior state-of-the-art by 11.7%. Our analysis further reveals that dynamic augmentation tasks and desktop environments pose substantial hurdles, underscoring the necessity of adaptive planning and feedback-driven execution for advancing real-world GUI automation. The code and data are available at https://github.com/showlab/WorldGUI.
Related papers
- MMBench-GUI: Hierarchical Multi-Platform Evaluation Framework for GUI Agents [88.35544552383581]
We introduce MMBench-GUI, a hierarchical benchmark for evaluating GUI automation agents across Windows, Linux, iOS, Android, and Web platforms.<n>It comprises four levels: GUI Content Understanding, Element Grounding, Task Automation, and Task Collaboration, covering essential skills for GUI agents.
arXiv Detail & Related papers (2025-07-25T17:59:26Z) - GTA1: GUI Test-time Scaling Agent [77.60727242084971]
This paper investigates the two main challenges with our GUI Test-time Scaling Agent, GTA1.<n>First, to select the most appropriate action proposal, we introduce a test-time scaling method.<n>Second, we propose a model that achieves improved accuracy when grounding the selected action proposal to its corresponding visual elements.
arXiv Detail & Related papers (2025-07-08T08:52:18Z) - MobileGUI-RL: Advancing Mobile GUI Agent through Reinforcement Learning in Online Environment [63.62778707277929]
MobileGUI-RL is a scalable framework that trains GUI agent in online environment.<n>It synthesizes a curriculum of learnable tasks through self-exploration and filtering.<n>It adapts GRPO to GUI navigation with trajectory-aware advantages and composite rewards.
arXiv Detail & Related papers (2025-07-08T07:07:53Z) - Look Before You Leap: A GUI-Critic-R1 Model for Pre-Operative Error Diagnosis in GUI Automation [83.92224427735859]
We introduce a pre-operative critic mechanism that provides effective feedback prior to the actual execution.<n>We develop a reasoning-bootstrapping based data collection pipeline to create a GUI-Critic-Train and a GUI-Critic-Test.<n>Our model offers significant advantages in critic accuracy compared to current MLLMs.
arXiv Detail & Related papers (2025-06-05T04:12:36Z) - TongUI: Building Generalized GUI Agents by Learning from Multimodal Web Tutorials [70.06743063375121]
We propose the TongUI framework that builds generalized GUI agents by learning from rich multimodal web tutorials.
We produce the GUI-Net dataset containing 143K trajectory data across five operating systems and more than 200 applications.
We develop the TongUI agent by fine-tuning Qwen2.5-VL-3B/7B models on GUI-Net, which show remarkable performance improvements on commonly used grounding and navigation benchmarks.
arXiv Detail & Related papers (2025-04-17T06:15:56Z) - WinClick: GUI Grounding with Multimodal Large Language Models [46.44235543835595]
We introduce WinClick, a novel visual GUI agent developed in Windows platform.
To overcome the challenge of GUI grounding, we enhance WinClick with GUI grounding pre-training.
We also introduce WinSpot, the first comprehensive benchmark for GUI grounding on Windows.
arXiv Detail & Related papers (2025-01-27T08:29:17Z) - GUI-Bee: Align GUI Action Grounding to Novel Environments via Autonomous Exploration [56.58744345634623]
We propose GUI-Bee, an MLLM-based autonomous agent, to collect high-quality, environment-specific data through exploration.<n>We also introduce NovelScreenSpot, a benchmark for testing how well the data can help align GUI action grounding models to novel environments.
arXiv Detail & Related papers (2025-01-23T18:16:21Z) - UI-TARS: Pioneering Automated GUI Interaction with Native Agents [58.18100825673032]
This paper introduces UI-TARS, a native GUI agent model that solely perceives the screenshots as input and performs human-like interactions.<n>In the OSWorld benchmark, UI-TARS achieves scores of 24.6 with 50 steps and 22.7 with 15 steps, outperforming Claude (22.0 and 14.9 respectively)
arXiv Detail & Related papers (2025-01-21T17:48:10Z) - GUI Testing Arena: A Unified Benchmark for Advancing Autonomous GUI Testing Agent [24.97846085313314]
We propose a formalized and comprehensive environment to evaluate the entire process of automated GUI Testing.<n>We divide the testing process into three key subtasks: test intention generation, test task execution, and GUI defect detection.<n>It evaluates the performance of different models using three data types: real mobile applications, mobile applications with artificially injected defects, and synthetic data.
arXiv Detail & Related papers (2024-12-24T13:41:47Z) - Zero-Shot Prompting Approaches for LLM-based Graphical User Interface Generation [53.1000575179389]
We propose a Retrieval-Augmented GUI Generation (RAGG) approach, integrated with an LLM-based GUI retrieval re-ranking and filtering mechanism.<n>In addition, we adapt Prompt Decomposition (PDGG) and Self-Critique (SCGG) for GUI generation.<n>Our evaluation, which encompasses over 3,000 GUI annotations from over 100 crowd-workers with UI/UX experience, shows that SCGG, in contrast to PDGG and RAGG, can lead to more effective GUI generation.
arXiv Detail & Related papers (2024-12-15T22:17:30Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
We introduce Aguvis, a unified vision-based framework for autonomous GUI agents.<n>Our approach leverages image-based observations, and grounding instructions in natural language to visual elements.<n>To address the limitations of previous work, we integrate explicit planning and reasoning within the model.
arXiv Detail & Related papers (2024-12-05T18:58:26Z) - Ponder & Press: Advancing Visual GUI Agent towards General Computer Control [13.39115823642937]
Ponder & Press is a divide-and-conquer framework for general computer control using only visual input.
Our agent offers a versatile, human-like interaction paradigm applicable to a wide range of applications.
arXiv Detail & Related papers (2024-12-02T08:35:31Z) - Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents [20.08996257335876]
We advocate a human-like embodiment for GUI agents that perceive the environment entirely visually and directly perform pixel-level operations on the GUI.<n>We collect the largest dataset for GUI visual grounding so far, containing 10M GUI elements and their referring expressions over 1.3M screenshots.<n>We show that a simple recipe, which includes web-based synthetic data and slight adaptation of the LLaVA architecture, is surprisingly effective for training such visual grounding models.
arXiv Detail & Related papers (2024-10-07T17:47:50Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
We contribute GUICourse, a suite of datasets to train visual-based GUI agents.
First, we introduce the GUIEnv dataset to strengthen the OCR and grounding capabilities of VLMs.
Then, we introduce the GUIAct and GUIChat datasets to enrich their knowledge of GUI components and interactions.
arXiv Detail & Related papers (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
This paper introduces a new dataset, called GUI-World, which features meticulously crafted Human-MLLM annotations.
We evaluate the capabilities of current state-of-the-art MLLMs, including ImageLLMs and VideoLLMs, in understanding various types of GUI content.
arXiv Detail & Related papers (2024-06-16T06:56:53Z) - SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents [17.43878828389188]
We propose a novel visual Graphical User Interface (GUI) agent, SeeClick, which only relies on screenshots for task automation.
To tackle this challenge, we propose to enhance SeeClick with GUI grounding pre-training and devise a method to automate the curation of GUI grounding data.
We have also created ScreenSpot, the first realistic GUI grounding benchmark that encompasses mobile, desktop, and web environments.
arXiv Detail & Related papers (2024-01-17T08:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.