Plantation Monitoring Using Drone Images: A Dataset and Performance Review
- URL: http://arxiv.org/abs/2502.08233v1
- Date: Wed, 12 Feb 2025 09:21:16 GMT
- Title: Plantation Monitoring Using Drone Images: A Dataset and Performance Review
- Authors: Yashwanth Karumanchi, Gudala Laxmi Prasanna, Snehasis Mukherjee, Nagesh Kolagani,
- Abstract summary: Small, low cost drones equipped with an RGB camera can capture high-resolution images of agricultural fields.
Existing methods of automated plantation monitoring are mostly based on satellite images.
We propose an automated system for plantation health monitoring using drone images.
- Score: 2.4936576553283287
- License:
- Abstract: Automatic monitoring of tree plantations plays a crucial role in agriculture. Flawless monitoring of tree health helps farmers make informed decisions regarding their management by taking appropriate action. Use of drone images for automatic plantation monitoring can enhance the accuracy of the monitoring process, while still being affordable to small farmers in developing countries such as India. Small, low cost drones equipped with an RGB camera can capture high-resolution images of agricultural fields, allowing for detailed analysis of the well-being of the plantations. Existing methods of automated plantation monitoring are mostly based on satellite images, which are difficult to get for the farmers. We propose an automated system for plantation health monitoring using drone images, which are becoming easier to get for the farmers. We propose a dataset of images of trees with three categories: ``Good health", ``Stunted", and ``Dead". We annotate the dataset using CVAT annotation tool, for use in research purposes. We experiment with different well-known CNN models to observe their performance on the proposed dataset. The initial low accuracy levels show the complexity of the proposed dataset. Further, our study revealed that, depth-wise convolution operation embedded in a deep CNN model, can enhance the performance of the model on drone dataset. Further, we apply state-of-the-art object detection models to identify individual trees to better monitor them automatically.
Related papers
- Accurate Crop Yield Estimation of Blueberries using Deep Learning and Smart Drones [5.586392657005597]
We present an AI pipeline that involves using smart drones equipped with computer vision to obtain a more accurate fruit count and yield estimation.
The core components are two object-detection models based on the YOLO deep learning architecture.
We describe how to deploy our models to map out blueberry fields using different sampling strategies.
arXiv Detail & Related papers (2025-01-04T17:45:29Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Improving Data Efficiency for Plant Cover Prediction with Label
Interpolation and Monte-Carlo Cropping [7.993547048820065]
The plant community composition is an essential indicator of environmental changes and is usually analyzed in ecological field studies.
We introduce an approach to interpolate the sparse labels in the collected vegetation plot time series down to the intermediate dense and unlabeled images.
We also introduce a new method we call Monte-Carlo Cropping to deal with high-resolution images efficiently.
arXiv Detail & Related papers (2023-07-17T15:17:39Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
Disruptions in the plant's normal state, caused by diseases, often interfere with essential plant activities.
We propose a deep learning-based approach for efficient detection of plant diseases using drone-captured imagery.
arXiv Detail & Related papers (2023-05-22T21:15:12Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Agricultural Plant Cataloging and Establishment of a Data Framework from
UAV-based Crop Images by Computer Vision [4.0382342610484425]
We present a hands-on workflow for the automatized temporal and spatial identification and individualization of crop images from UAVs.
The presented approach improves analysis and interpretation of UAV data in agriculture significantly.
arXiv Detail & Related papers (2022-01-08T21:14:07Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
This paper presents a review of object detection and tracking datasets and benchmarks, and discusses the challenges of collecting large-scale drone-based object detection and tracking datasets with manual annotations.
We describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South.
We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions.
arXiv Detail & Related papers (2020-01-16T00:11:56Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.