Unveiling Global Discourse Structures: Theoretical Analysis and NLP Applications in Argument Mining
- URL: http://arxiv.org/abs/2502.08371v1
- Date: Wed, 12 Feb 2025 13:03:43 GMT
- Title: Unveiling Global Discourse Structures: Theoretical Analysis and NLP Applications in Argument Mining
- Authors: Christopher van Le,
- Abstract summary: Coherence plays a pivotal role in human text comprehension and is a hallmark of high-quality text.
This paper proposes methods for detecting, extracting and representing these global discourse structures in a proccess called Argument(ation) Mining.
- Score: 0.0
- License:
- Abstract: Particularly in the structure of global discourse, coherence plays a pivotal role in human text comprehension and is a hallmark of high-quality text. This is especially true for persuasive texts, where coherent argument structures support claims effectively. This paper discusses and proposes methods for detecting, extracting and representing these global discourse structures in a proccess called Argument(ation) Mining. We begin by defining key terms and processes of discourse structure analysis, then continue to summarize existing research on the matter, and identify shortcomings in current argument component extraction and classification methods. Furthermore, we will outline an architecture for argument mining that focuses on making models more generalisable while overcoming challenges in the current field of research by utilizing novel NLP techniques. This paper reviews current knowledge, summarizes recent works, and outlines our NLP pipeline, aiming to contribute to the theoretical understanding of global discourse structures.
Related papers
- Reasoning with Natural Language Explanations [15.281385727331473]
Explanation constitutes an archetypal feature of human rationality, underpinning learning and generalisation.
An increasing amount of research in Natural Language Inference (NLI) has started reconsidering the role that explanations play in learning and inference.
arXiv Detail & Related papers (2024-10-05T13:15:24Z) - Hierarchical Narrative Analysis: Unraveling Perceptions of Generative AI [1.1874952582465599]
We propose a method that leverages large language models (LLMs) to extract and organize these structures into a hierarchical framework.
We validate this approach by analyzing public opinions on generative AI collected by Japan's Agency for Cultural Affairs.
Our analysis provides clearer visualization of the factors influencing divergent opinions on generative AI, offering deeper insights into the structures of agreement and disagreement.
arXiv Detail & Related papers (2024-09-17T09:56:12Z) - Generation of Explanations for Logic Reasoning [0.0]
The research is centred on employing GPT-3.5-turbo to automate the analysis of fortiori arguments.
This thesis makes significant contributions to the fields of artificial intelligence and logical reasoning.
arXiv Detail & Related papers (2023-11-22T15:22:04Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
We present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way.
Our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
arXiv Detail & Related papers (2023-10-18T20:18:05Z) - Uncovering the Potential of ChatGPT for Discourse Analysis in Dialogue:
An Empirical Study [51.079100495163736]
This paper systematically inspects ChatGPT's performance in two discourse analysis tasks: topic segmentation and discourse parsing.
ChatGPT demonstrates proficiency in identifying topic structures in general-domain conversations yet struggles considerably in specific-domain conversations.
Our deeper investigation indicates that ChatGPT can give more reasonable topic structures than human annotations but only linearly parses the hierarchical rhetorical structures.
arXiv Detail & Related papers (2023-05-15T07:14:41Z) - Argument Mining using BERT and Self-Attention based Embeddings [1.6114012813668934]
In this paper, a novel methodology for argument mining is proposed.
It employs attention-based embeddings for link prediction to model the causational hierarchies in typical argument structures prevalent in online discourse.
arXiv Detail & Related papers (2023-02-27T15:52:31Z) - An Inclusive Notion of Text [69.36678873492373]
We argue that clarity on the notion of text is crucial for reproducible and generalizable NLP.
We introduce a two-tier taxonomy of linguistic and non-linguistic elements that are available in textual sources and can be used in NLP modeling.
arXiv Detail & Related papers (2022-11-10T14:26:43Z) - Revise and Resubmit: An Intertextual Model of Text-based Collaboration
in Peer Review [52.359007622096684]
Peer review is a key component of the publishing process in most fields of science.
Existing NLP studies focus on the analysis of individual texts.
editorial assistance often requires modeling interactions between pairs of texts.
arXiv Detail & Related papers (2022-04-22T16:39:38Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
This paper empirically shows that the discourse relations between two arguments along the context path are essential factors for identifying the persuasive power of an argument.
We propose DisCOC to inject and fuse the sentence-level structural information with contextualized features derived from large-scale language models.
arXiv Detail & Related papers (2021-06-02T06:49:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.