Strong bounds for large-scale Minimum Sum-of-Squares Clustering
- URL: http://arxiv.org/abs/2502.08397v1
- Date: Wed, 12 Feb 2025 13:40:00 GMT
- Title: Strong bounds for large-scale Minimum Sum-of-Squares Clustering
- Authors: Anna Livia Croella, Veronica Piccialli, Antonio M. Sudoso,
- Abstract summary: Minimum Sum-of-Squares Clustering (MSSC) is one of the most widely used clustering methods.
MSSC aims to minimize the total squared Euclidean distance between data points and their corresponding cluster centroids.
We introduce a novel method to validate MSSC solutions through optimality gaps.
- Score: 0.9831489366502302
- License:
- Abstract: Clustering is a fundamental technique in data analysis and machine learning, used to group similar data points together. Among various clustering methods, the Minimum Sum-of-Squares Clustering (MSSC) is one of the most widely used. MSSC aims to minimize the total squared Euclidean distance between data points and their corresponding cluster centroids. Due to the unsupervised nature of clustering, achieving global optimality is crucial, yet computationally challenging. The complexity of finding the global solution increases exponentially with the number of data points, making exact methods impractical for large-scale datasets. Even obtaining strong lower bounds on the optimal MSSC objective value is computationally prohibitive, making it difficult to assess the quality of heuristic solutions. We address this challenge by introducing a novel method to validate heuristic MSSC solutions through optimality gaps. Our approach employs a divide-and-conquer strategy, decomposing the problem into smaller instances that can be handled by an exact solver. The decomposition is guided by an auxiliary optimization problem, the "anticlustering problem", for which we design an efficient heuristic. Computational experiments demonstrate the effectiveness of the method for large-scale instances, achieving optimality gaps below 3% in most cases while maintaining reasonable computational times. These results highlight the practicality of our approach in assessing feasible clustering solutions for large datasets, bridging a critical gap in MSSC evaluation.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - A cutting plane algorithm for globally solving low dimensional k-means
clustering problems [4.5594982923247995]
We consider the k-means problem for instances with low dimensional data and formulate it as a structured concave assignment problem.
This allows us to exploit the low dimensional structure and solve the problem to global optimality within reasonable time.
The paper combines methods from global optimization theory to accelerate the procedure, and we provide numerical results.
arXiv Detail & Related papers (2024-02-21T07:55:33Z) - Mostly Beneficial Clustering: Aggregating Data for Operational Decision
Making [3.9825334703672812]
We propose a cluster-based Shrunken-SAA approach that can exploit the cluster structure among problems.
We prove that, as the number of problems grows, leveraging the given cluster structure among problems yields additional benefits.
Our proposed approach can be extended to general cost functions under mild conditions.
arXiv Detail & Related papers (2023-11-29T02:53:32Z) - On the Global Solution of Soft k-Means [159.23423824953412]
This paper presents an algorithm to solve the Soft k-Means problem globally.
A new model, named Minimal Volume Soft kMeans (MVSkM), is proposed to address solutions non-uniqueness issue.
arXiv Detail & Related papers (2022-12-07T12:06:55Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments.
One-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees.
For strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error rates in terms of the sample size.
arXiv Detail & Related papers (2022-09-22T09:04:10Z) - How to Use K-means for Big Data Clustering? [2.1165011830664677]
K-means is the simplest and most widely used algorithm under the Euclidean Minimum Sum-of-Squares Clustering (MSSC) model.
We propose a new parallel scheme of using K-means and K-means++ algorithms for big data clustering.
arXiv Detail & Related papers (2022-04-14T08:18:01Z) - A sampling-based approach for efficient clustering in large datasets [0.8952229340927184]
We propose a simple and efficient clustering method for high-dimensional data with a large number of clusters.
Our contribution is substantially more efficient than k-means as it does not require an all to all comparison of data points and clusters.
arXiv Detail & Related papers (2021-12-29T19:15:20Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
In differentially private clustering, the goal is to identify $k$ cluster centers without disclosing information on individual data points.
We provide implementable differentially private clustering algorithms that provide utility when the data is "easy"
We propose a framework that allows us to apply non-private clustering algorithms to the easy instances and privately combine the results.
arXiv Detail & Related papers (2021-12-29T08:13:56Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
We present a new branch-and-bound algorithm for semi-supervised MSSC.
Background knowledge is incorporated as pairwise must-link and cannot-link constraints.
For the first time, the proposed global optimization algorithm efficiently manages to solve real-world instances up to 800 data points.
arXiv Detail & Related papers (2021-11-30T17:08:53Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
We propose a "small data for big task" paradigm dubbed Meta Clustering Learning (MCL)
MCL only pseudo-labels a subset of the entire unlabeled data via clustering to save computing for the first-phase training.
Our method significantly saves computational cost while achieving a comparable or even better performance compared to prior works.
arXiv Detail & Related papers (2021-11-19T04:10:18Z) - Learnable Subspace Clustering [76.2352740039615]
We develop a learnable subspace clustering paradigm to efficiently solve the large-scale subspace clustering problem.
The key idea is to learn a parametric function to partition the high-dimensional subspaces into their underlying low-dimensional subspaces.
To the best of our knowledge, this paper is the first work to efficiently cluster millions of data points among the subspace clustering methods.
arXiv Detail & Related papers (2020-04-09T12:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.