Learning Theory for Kernel Bilevel Optimization
- URL: http://arxiv.org/abs/2502.08457v1
- Date: Wed, 12 Feb 2025 14:52:04 GMT
- Title: Learning Theory for Kernel Bilevel Optimization
- Authors: Fares El Khoury, Edouard Pauwels, Samuel Vaiter, Michael Arbel,
- Abstract summary: We investigate the generalization properties for kernel bilevel optimization problems where the inner objective is optimized over a Reproducing Kernel Hilbert Space.
We establish novel generalization error bounds for the bilevel problem under finite-sample approximation.
These generalization error estimates allow to characterize the statistical accuracy of gradient-based methods applied to the empirical discretization of the bilevel problem.
- Score: 25.28618481877551
- License:
- Abstract: Bilevel optimization has emerged as a technique for addressing a wide range of machine learning problems that involve an outer objective implicitly determined by the minimizer of an inner problem. In this paper, we investigate the generalization properties for kernel bilevel optimization problems where the inner objective is optimized over a Reproducing Kernel Hilbert Space. This setting enables rich function approximation while providing a foundation for rigorous theoretical analysis. In this context, we establish novel generalization error bounds for the bilevel problem under finite-sample approximation. Our approach adopts a functional perspective, inspired by (Petrulionyte et al., 2024), and leverages tools from empirical process theory and maximal inequalities for degenerate $U$-processes to derive uniform error bounds. These generalization error estimates allow to characterize the statistical accuracy of gradient-based methods applied to the empirical discretization of the bilevel problem.
Related papers
- Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Implicit Bayesian meta-learning (iBaML) method broadens the scope of learnable priors, but also quantifies the associated uncertainty.
Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one.
arXiv Detail & Related papers (2023-03-31T02:10:30Z) - Efficient Gradient Approximation Method for Constrained Bilevel
Optimization [2.0305676256390934]
Bilevel optimization has been developed with large-scale high-dimensional data.
This paper considers a constrained bilevel problem with convex and non-differentiable approximations.
arXiv Detail & Related papers (2023-02-03T19:34:56Z) - On Implicit Bias in Overparameterized Bilevel Optimization [38.11483853830913]
Bilevel problems consist of two nested sub-problems, called the outer and inner problems, respectively.
We investigate the implicit bias of gradient-based algorithms for bilevel optimization.
We show that the inner solutions obtained by warm-start BLO can encode a surprising amount of information about the outer objective.
arXiv Detail & Related papers (2022-12-28T18:57:46Z) - Quantization-Based Optimization: Alternative Stochastic Approximation of
Global Optimization [0.0]
We propose a global optimization algorithm based on quantizing the energy level of an objective function in an NP-hard problem.
Numerical experiments show that the proposed algorithm outperforms conventional learning methods in solving NP-hard optimization problems.
arXiv Detail & Related papers (2022-11-08T03:01:45Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Convergence Properties of Stochastic Hypergradients [38.64355126221992]
We study approximation schemes for the hypergradient, which are important when the lower-level problem is empirical risk on a large dataset.
We provide numerical experiments to support our theoretical analysis and to show the advantage of using hypergradients in practice.
arXiv Detail & Related papers (2020-11-13T20:50:36Z) - Towards Optimal Problem Dependent Generalization Error Bounds in
Statistical Learning Theory [11.840747467007963]
We study problem-dependent rates that scale near-optimally with the variance, the effective loss errors, or the norms evaluated at the "best gradient hypothesis"
We introduce a principled framework dubbed "uniform localized convergence"
We show that our framework resolves several fundamental limitations of existing uniform convergence and localization analysis approaches.
arXiv Detail & Related papers (2020-11-12T04:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.