Rhythmic sharing: A bio-inspired paradigm for zero-shot adaptation and learning in neural networks
- URL: http://arxiv.org/abs/2502.08644v3
- Date: Fri, 14 Feb 2025 09:18:34 GMT
- Title: Rhythmic sharing: A bio-inspired paradigm for zero-shot adaptation and learning in neural networks
- Authors: Hoony Kang, Wolfgang Losert,
- Abstract summary: We develop a learning paradigm that is based on oscillations in link strengths and associates learning with the coordination of these oscillations.
We find that this paradigm yields rapid adaptation and learning in artificial neural networks.
Our study opens the door for introducing rapid adaptation and learning capabilities into leading AI models.
- Score: 0.0
- License:
- Abstract: The brain can rapidly adapt to new contexts and learn from limited data, a coveted characteristic that artificial intelligence algorithms have struggled to mimic. Inspired by oscillatory rhythms of the mechanical structures of neural cells, we developed a learning paradigm that is based on oscillations in link strengths and associates learning with the coordination of these oscillations. We find that this paradigm yields rapid adaptation and learning in artificial neural networks. Link oscillations can rapidly change coordination, endowing the network with the ability to sense subtle context changes in an unsupervised manner. In other words, the network generates the missing contextual tokens required to perform as a generalist AI architecture capable of predicting dynamics in multiple contexts. Oscillations also allow the network to extrapolate dynamics to never-seen-before contexts. These capabilities make our learning paradigm a powerful starting point for novel models of learning and cognition. Furthermore, learning through link coordination is agnostic to the specifics of the neural network architecture, hence our study opens the door for introducing rapid adaptation and learning capabilities into leading AI models.
Related papers
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.
We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.
We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Dynamical stability and chaos in artificial neural network trajectories along training [3.379574469735166]
We study the dynamical properties of this process by analyzing through this lens the network trajectories of a shallow neural network.
We find hints of regular and chaotic behavior depending on the learning rate regime.
This work also contributes to the cross-fertilization of ideas between dynamical systems theory, network theory and machine learning.
arXiv Detail & Related papers (2024-04-08T17:33:11Z) - Reasoning Algorithmically in Graph Neural Networks [1.8130068086063336]
We aim to integrate the structured and rule-based reasoning of algorithms with adaptive learning capabilities of neural networks.
This dissertation provides theoretical and practical contributions to this area of research.
arXiv Detail & Related papers (2024-02-21T12:16:51Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Meta Neural Coordination [0.0]
Meta-learning aims to develop algorithms that can learn from other learning algorithms to adapt to new and changing environments.
Uncertainty in the predictions of conventional deep neural networks highlights the partial predictability of the world.
We discuss the potential advancements required to build biologically-inspired machine intelligence.
arXiv Detail & Related papers (2023-05-20T06:06:44Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Abrupt and spontaneous strategy switches emerge in simple regularised
neural networks [8.737068885923348]
We study whether insight-like behaviour can occur in simple artificial neural networks.
Analyses of network architectures and learning dynamics revealed that insight-like behaviour crucially depended on a regularised gating mechanism.
This suggests that insight-like behaviour can arise naturally from gradual learning in simple neural networks.
arXiv Detail & Related papers (2023-02-22T12:48:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Deep learning of contagion dynamics on complex networks [0.0]
We propose a complementary approach based on deep learning to build effective models of contagion dynamics on networks.
By allowing simulations on arbitrary network structures, our approach makes it possible to explore the properties of the learned dynamics beyond the training data.
Our results demonstrate how deep learning offers a new and complementary perspective to build effective models of contagion dynamics on networks.
arXiv Detail & Related papers (2020-06-09T17:18:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.