Unpaired Image-to-Image Translation with Content Preserving Perspective: A Review
- URL: http://arxiv.org/abs/2502.08667v2
- Date: Sat, 15 Feb 2025 15:42:35 GMT
- Title: Unpaired Image-to-Image Translation with Content Preserving Perspective: A Review
- Authors: Mehran Safayani, Behnaz Mirzapour, Hanieh aghaebrahimiyan, Nasrin Salehi, Hamid Ravaee,
- Abstract summary: Image-to-image translation (I2I) transforms an image from a source domain to a target domain while preserving source content.
The degree of preservation of the content of the source images in the translation process can be different according to the problem and the intended application.
We divide the different tasks in the field of image-to-image translation into three categories: Fully Content preserving, Partially Content preserving, and Non-Content preserving.
- Score: 1.1243043117244755
- License:
- Abstract: Image-to-image translation (I2I) transforms an image from a source domain to a target domain while preserving source content. Most computer vision applications are in the field of image-to-image translation, such as style transfer, image segmentation, and photo enhancement. The degree of preservation of the content of the source images in the translation process can be different according to the problem and the intended application. From this point of view, in this paper, we divide the different tasks in the field of image-to-image translation into three categories: Fully Content preserving, Partially Content preserving, and Non-Content preserving. We present different tasks, datasets, methods, results of methods for these three categories in this paper. We make a categorization for I2I methods based on the architecture of different models and study each category separately. In addition, we introduce well-known evaluation criteria in the I2I translation field. Specifically, nearly 70 different I2I models were analyzed, and more than 10 quantitative evaluation metrics and 30 distinct tasks and datasets relevant to the I2I translation problem were both introduced and assessed. Translating from simulation to real images could be well viewed as an application of fully content preserving or partially content preserving unsupervised image-to-image translation methods. So, we provide a benchmark for Sim-to-Real translation, which can be used to evaluate different methods. In general, we conclude that because of the different extent of the obligation to preserving content in various applications, it is better to consider this issue in choosing a suitable I2I model for a specific application.
Related papers
- An image speaks a thousand words, but can everyone listen? On image transcreation for cultural relevance [53.974497865647336]
We take a first step towards translating images to make them culturally relevant.
We build three pipelines comprising state-of-the-art generative models to do the task.
We conduct a human evaluation of translated images to assess for cultural relevance and meaning preservation.
arXiv Detail & Related papers (2024-04-01T17:08:50Z) - StyleFlow For Content-Fixed Image to Image Translation [15.441136520005578]
StyleFlow is a new I2I translation model that consists of normalizing flows and a novel Style-Aware Normalization (SAN) module.
Our model supports both image-guided translation and multi-modal synthesis.
arXiv Detail & Related papers (2022-07-05T09:40:03Z) - Multi-domain Unsupervised Image-to-Image Translation with Appearance
Adaptive Convolution [62.4972011636884]
We propose a novel multi-domain unsupervised image-to-image translation (MDUIT) framework.
We exploit the decomposed content feature and appearance adaptive convolution to translate an image into a target appearance.
We show that the proposed method produces visually diverse and plausible results in multiple domains compared to the state-of-the-art methods.
arXiv Detail & Related papers (2022-02-06T14:12:34Z) - Smoothing the Disentangled Latent Style Space for Unsupervised
Image-to-Image Translation [56.55178339375146]
Image-to-Image (I2I) multi-domain translation models are usually evaluated also using the quality of their semantic results.
We propose a new training protocol based on three specific losses which help a translation network to learn a smooth and disentangled latent style space.
arXiv Detail & Related papers (2021-06-16T17:58:21Z) - Unpaired Image-to-Image Translation via Latent Energy Transport [61.62293304236371]
Image-to-image translation aims to preserve source contents while translating to discriminative target styles between two visual domains.
In this paper, we propose to deploy an energy-based model (EBM) in the latent space of a pretrained autoencoder for this task.
Our model is the first to be applicable to 1024$times$1024-resolution unpaired image translation.
arXiv Detail & Related papers (2020-12-01T17:18:58Z) - Unsupervised Image-to-Image Translation via Pre-trained StyleGAN2
Network [73.5062435623908]
We propose a new I2I translation method that generates a new model in the target domain via a series of model transformations.
By feeding the latent vector into the generated model, we can perform I2I translation between the source domain and target domain.
arXiv Detail & Related papers (2020-10-12T13:51:40Z) - Retrieval Guided Unsupervised Multi-domain Image-to-Image Translation [59.73535607392732]
Image to image translation aims to learn a mapping that transforms an image from one visual domain to another.
We propose the use of an image retrieval system to assist the image-to-image translation task.
arXiv Detail & Related papers (2020-08-11T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.