Multispectral Remote Sensing for Weed Detection in West Australian Agricultural Lands
- URL: http://arxiv.org/abs/2502.08678v1
- Date: Wed, 12 Feb 2025 07:01:42 GMT
- Title: Multispectral Remote Sensing for Weed Detection in West Australian Agricultural Lands
- Authors: Haitian Wang, Muhammad Ibrahim, Yumeng Miao, D ustin Severtson, Atif Mansoor, Ajmal S. Mian,
- Abstract summary: The Kondinin region in Western Australia faces significant agricultural challenges due to pervasive weed infestations, causing economic losses and ecological impacts.
This study constructs a tailored multispectral remote sensing framework for weed detection to advance precision agriculture practices.
Unmanned aerial vehicles were used to collect raw multispectral data from two experimental areas over four years, covering 0.6046 km2 and ground truth annotations were created with GPS-enabled vehicles to manually label weeds and crops.
- Score: 3.6284577335311563
- License:
- Abstract: The Kondinin region in Western Australia faces significant agricultural challenges due to pervasive weed infestations, causing economic losses and ecological impacts. This study constructs a tailored multispectral remote sensing dataset and an end-to-end framework for weed detection to advance precision agriculture practices. Unmanned aerial vehicles were used to collect raw multispectral data from two experimental areas (E2 and E8) over four years, covering 0.6046 km^{2} and ground truth annotations were created with GPS-enabled vehicles to manually label weeds and crops. The dataset is specifically designed for agricultural applications in Western Australia. We propose an end-to-end framework for weed detection that includes extensive preprocessing steps, such as denoising, radiometric calibration, image alignment, orthorectification, and stitching. The proposed method combines vegetation indices (NDVI, GNDVI, EVI, SAVI, MSAVI) with multispectral channels to form classification features, and employs several deep learning models to identify weeds based on the input features. Among these models, ResNet achieves the highest performance, with a weed detection accuracy of 0.9213, an F1-Score of 0.8735, an mIOU of 0.7888, and an mDC of 0.8865, validating the efficacy of the dataset and the proposed weed detection method.
Related papers
- WeedsGalore: A Multispectral and Multitemporal UAV-based Dataset for Crop and Weed Segmentation in Agricultural Maize Fields [0.7421845364041001]
Weeds are one of the major reasons for crop yield loss but current weeding practices fail to manage weeds in an efficient and targeted manner.
We present a novel dataset for semantic and instance segmentation of crops and weeds in agricultural maize fields.
arXiv Detail & Related papers (2025-02-18T18:13:19Z) - Towards Efficient and Intelligent Laser Weeding: Method and Dataset for Weed Stem Detection [51.65457287518379]
This study is the first empirical investigation of weed recognition for laser weeding.
We integrate the detection of crop and weed with the localization of weed stem into one end-to-end system.
The proposed system improves weeding accuracy by 6.7% and reduces energy cost by 32.3% compared to existing weed recognition systems.
arXiv Detail & Related papers (2025-02-10T08:42:46Z) - CMAViT: Integrating Climate, Managment, and Remote Sensing Data for Crop Yield Estimation with Multimodel Vision Transformers [0.0]
We introduce a deep learning-based multi-model called Climate-Management Aware Vision Transformer (CMAViT)
CMAViT integrates both spatial and temporal data by leveraging remote sensing imagery and short-term meteorological data.
It outperforms traditional models like UNet-ConvLSTM, excelling in spatial variability capture and yield prediction.
arXiv Detail & Related papers (2024-11-25T23:34:53Z) - RoWeeder: Unsupervised Weed Mapping through Crop-Row Detection [8.94249680213101]
RoWeeder is an innovative framework for unsupervised weed mapping.
It combines crop-row detection with a noise-resilient deep learning model.
By integrating RoWeeder with drone technology, farmers can conduct real-time aerial surveys.
arXiv Detail & Related papers (2024-10-07T12:26:22Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
We propose a novel deep learning method based on a Convolutional Neural Network (CNN)
It simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations.
The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops.
arXiv Detail & Related papers (2020-12-31T18:51:17Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Weed Density and Distribution Estimation for Precision Agriculture using
Semi-Supervised Learning [0.0]
We propose a deep learning-based semi-supervised approach for robust estimation of weed density and distribution.
In this work, the foreground vegetation pixels containing crops and weeds are first identified using a Convolutional Neural Network (CNN) based unsupervised segmentation.
The weed infected regions are identified using a fine-tuned CNN, eliminating the need for designing hand-crafted features.
arXiv Detail & Related papers (2020-11-04T09:35:53Z) - Collaborative Training between Region Proposal Localization and
Classification for Domain Adaptive Object Detection [121.28769542994664]
Domain adaptation for object detection tries to adapt the detector from labeled datasets to unlabeled ones for better performance.
In this paper, we are the first to reveal that the region proposal network (RPN) and region proposal classifier(RPC) demonstrate significantly different transferability when facing large domain gap.
arXiv Detail & Related papers (2020-09-17T07:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.