HistoSmith: Single-Stage Histology Image-Label Generation via Conditional Latent Diffusion for Enhanced Cell Segmentation and Classification
- URL: http://arxiv.org/abs/2502.08754v1
- Date: Wed, 12 Feb 2025 19:51:41 GMT
- Title: HistoSmith: Single-Stage Histology Image-Label Generation via Conditional Latent Diffusion for Enhanced Cell Segmentation and Classification
- Authors: Valentina Vadori, Jean-Marie Graïc, Antonella Peruffo, Livio Finos, Ujwala Kiran Chaudhari, Enrico Grisan,
- Abstract summary: This study introduces a novel single-stage approach for generating image-label pairs to augment histology datasets.
Unlike state-of-the-art methods that utilize diffusion models with separate components for label and image generation, our approach employs a latent diffusion model.
This model enables tailored data generation by conditioning on user-defined parameters such as cell types, quantities, and tissue types.
- Score: 0.19791587637442667
- License:
- Abstract: Precise segmentation and classification of cell instances are vital for analyzing the tissue microenvironment in histology images, supporting medical diagnosis, prognosis, treatment planning, and studies of brain cytoarchitecture. However, the creation of high-quality annotated datasets for training remains a major challenge. This study introduces a novel single-stage approach (HistoSmith) for generating image-label pairs to augment histology datasets. Unlike state-of-the-art methods that utilize diffusion models with separate components for label and image generation, our approach employs a latent diffusion model to learn the joint distribution of cellular layouts, classification masks, and histology images. This model enables tailored data generation by conditioning on user-defined parameters such as cell types, quantities, and tissue types. Trained on the Conic H&E histopathology dataset and the Nissl-stained CytoDArk0 dataset, the model generates realistic and diverse labeled samples. Experimental results demonstrate improvements in cell instance segmentation and classification, particularly for underrepresented cell types like neutrophils in the Conic dataset. These findings underscore the potential of our approach to address data scarcity challenges.
Related papers
- Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
Histopathology image classification is crucial for the accurate identification and diagnosis of various diseases.
We show that synthetic images can effectively augment existing datasets, ultimately improving the performance of the downstream histopathology image classification task.
arXiv Detail & Related papers (2024-09-24T12:02:55Z) - Co-synthesis of Histopathology Nuclei Image-Label Pairs using a Context-Conditioned Joint Diffusion Model [3.677055050765245]
We introduce a novel framework for co-synthesizing histopathology nuclei images and paired semantic labels.
We demonstrate the effectiveness of our framework in generating high-quality samples on multi-institutional, multi-organ, and multi-modality datasets.
arXiv Detail & Related papers (2024-07-19T16:06:11Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Topology-Guided Multi-Class Cell Context Generation for Digital
Pathology [28.43244574309888]
We introduce several mathematical tools from spatial statistics and topological data analysis.
We generate high quality multi-class cell layouts for the first time.
We show that the topology-rich cell layouts can be used for data augmentation and improve the performance of downstream tasks such as cell classification.
arXiv Detail & Related papers (2023-04-05T07:01:34Z) - CCRL: Contrastive Cell Representation Learning [0.0]
We propose Contrastive Cell Representation Learning (CCRL) model for cell identification in H&E slides.
We show that this model can outperform all currently available cell clustering models by a large margin across two datasets from different tissue types.
arXiv Detail & Related papers (2022-08-12T18:12:03Z) - Interpretable Single-Cell Set Classification with Kernel Mean Embeddings [14.686560033030101]
Kernel Mean Embedding encodes the cellular landscape of each profiled biological sample.
We train a simple linear classifier and achieve state-of-the-art classification accuracy on 3 flow and mass datasets.
arXiv Detail & Related papers (2022-01-18T21:40:36Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.