InTAR: Inter-Task Auto-Reconfigurable Accelerator Design for High Data Volume Variation in DNNs
- URL: http://arxiv.org/abs/2502.08807v1
- Date: Wed, 12 Feb 2025 21:43:51 GMT
- Title: InTAR: Inter-Task Auto-Reconfigurable Accelerator Design for High Data Volume Variation in DNNs
- Authors: Zifan He, Anderson Truong, Yingqi Cao, Jason Cong,
- Abstract summary: We introduce the Inter-Task Auto-Reconfigurable Accelerator (InTAR) for HDV applications on FPGAs.
InTAR combines the high computational efficiency of sequential execution with the reduced off-chip memory overhead of dataflow execution.
We implement a set of multi-task kernels in various HDV DNNs using InTAR.
- Score: 5.762543012823378
- License:
- Abstract: The rise of deep neural networks (DNNs) has driven a boom in AI services, which results in an increased demand for computing power and memory. In modern DNNs, the data sizes produced and consumed are highly varied across operations (high data volume variation, HDV). Because existing design paradigms use fixed execution patterns that lead to either low computational efficiency due to pipeline stalls or frequent off-chip memory accesses to manage large intermediate data, HDV applications are challenging to accelerate on FPGAs. To address these challenges, we introduce the Inter-Task Auto-Reconfigurable Accelerator (InTAR), a novel accelerator design for HDV applications on FPGAs. InTAR combines the high computational efficiency of sequential execution with the reduced off-chip memory overhead of dataflow execution. It switches execution patterns automatically with a static schedule determined before circuit design based on resource constraints and model parameters. Unlike previous reconfigurable accelerators, InTAR encodes reconfiguration schedules during circuit design, allowing model-specific optimizations that allocate only the necessary logic and interconnects. Thus, InTAR achieves a high clock frequency with fewer resources and low reconfiguration time. Furthermore, InTAR supports high-level tools such as HLS for fast design generation. We implement a set of multi-task kernels in various HDV DNNs using InTAR. Compared with dataflow and sequential accelerators, InTAR exhibits $1.8\times$ and $7.1 \times$ speedups correspondingly. We also implement InTAR for GPT-2 medium as a more complex example, which achieves a speedup of $\mathbf{3.65 \sim 39.14\times}$ and a $\mathbf{1.72 \sim 10.44\times}$ boost in DSP efficiency compared to the corresponding SoTA accelerators on FPGAs.
Related papers
- A Runtime-Adaptive Transformer Neural Network Accelerator on FPGAs [0.0]
ADAPTOR is a runtime-adaptive accelerator for dense matrix computations in transformer encoders and decoders on FPGAs.
It incorporates efficient matrix tiling to distribute resources across FPGA platforms.
It achieves a speedup of 1.7 to 2.25$times$ compared to some state-of-the-art FPGA-based accelerators.
arXiv Detail & Related papers (2024-11-27T08:53:19Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - DCP: Learning Accelerator Dataflow for Neural Network via Propagation [52.06154296196845]
This work proposes an efficient data-centric approach, named Dataflow Code Propagation (DCP), to automatically find the optimal dataflow for DNN layers in seconds without human effort.
DCP learns a neural predictor to efficiently update the dataflow codes towards the desired gradient directions to minimize various optimization objectives.
For example, without using additional training data, DCP surpasses the GAMMA method that performs a full search using thousands of samples.
arXiv Detail & Related papers (2024-10-09T05:16:44Z) - SWAT: Scalable and Efficient Window Attention-based Transformers Acceleration on FPGAs [3.302913401404089]
Sliding window-based static sparse attention mitigates the problem by limiting the attention scope of the input tokens.
We propose a dataflow-aware FPGA-based accelerator design, SWAT, that efficiently leverages the sparsity to achieve scalable performance for long input.
arXiv Detail & Related papers (2024-05-27T10:25:08Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
Attention-based neural networks have become pervasive in many AI tasks.
The use of the attention mechanism and feed-forward network (FFN) demands excessive computational and memory resources.
This paper proposes a hardware-friendly variant that adopts a unified butterfly sparsity pattern to approximate both the attention mechanism and the FFNs.
arXiv Detail & Related papers (2022-09-20T09:28:26Z) - A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA
Through Sparse Attention and Dynamic Pipelining [28.336502115532905]
This paper proposes a coherent sequence length adaptive algorithm-hardware co-design for Transformer acceleration.
We develop a hardware-friendly sparse attention operator and a length-aware hardware resource scheduling algorithm.
Our design has very small accuracy loss and has 80.2 $times$ and 2.6 $times$ speedup compared to CPU and GPU implementation.
arXiv Detail & Related papers (2022-08-07T05:48:38Z) - Pathways: Asynchronous Distributed Dataflow for ML [24.940220376358457]
We present the design of a new large scale orchestration layer for accelerators.
Our system, Pathways, is explicitly designed to enable exploration of new systems and ML research ideas.
arXiv Detail & Related papers (2022-03-23T16:50:53Z) - SECDA: Efficient Hardware/Software Co-Design of FPGA-based DNN
Accelerators for Edge Inference [0.0]
We propose SECDA, a new hardware/software co-design methodology to reduce design time of optimized Deep Neural Networks (DNN) inference accelerators on edge devices with FPGAs.
We use SECDA to efficiently develop two different DNN accelerator designs on a PYNQ-Z1 board, a platform that includes an edge FPGA.
We evaluate the two accelerator designs with four common DNN models, achieving an average performance speedup across models of up to 3.5$times$ with a 2.9$times$ reduction in energy consumption over CPU-only inference.
arXiv Detail & Related papers (2021-10-01T15:20:29Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
Transformer-based language models such as BERT provide significant accuracy improvement for a multitude of natural language processing (NLP) tasks.
We present EdgeBERT, an in-depth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP.
arXiv Detail & Related papers (2020-11-28T19:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.