InfiniteHiP: Extending Language Model Context Up to 3 Million Tokens on a Single GPU
- URL: http://arxiv.org/abs/2502.08910v1
- Date: Thu, 13 Feb 2025 02:52:01 GMT
- Title: InfiniteHiP: Extending Language Model Context Up to 3 Million Tokens on a Single GPU
- Authors: Heejun Lee, Geon Park, Jaduk Suh, Sung Ju Hwang,
- Abstract summary: We introduce InfiniteHiP, an inference framework for large language models (LLMs)
We dynamically eliminate irrelevant context tokens through a modular hierarchical token pruning algorithm.
Our framework achieves an 18.95x speedup in attention decoding for a 1 million token context without requiring additional training.
- Score: 48.105361428245736
- License:
- Abstract: In modern large language models (LLMs), handling very long context lengths presents significant challenges as it causes slower inference speeds and increased memory costs. Additionally, most existing pre-trained LLMs fail to generalize beyond their original training sequence lengths. To enable efficient and practical long-context utilization, we introduce InfiniteHiP, a novel, and practical LLM inference framework that accelerates processing by dynamically eliminating irrelevant context tokens through a modular hierarchical token pruning algorithm. Our method also allows generalization to longer sequences by selectively applying various RoPE adjustment methods according to the internal attention patterns within LLMs. Furthermore, we offload the key-value cache to host memory during inference, significantly reducing GPU memory pressure. As a result, InfiniteHiP enables the processing of up to 3 million tokens on a single L40s 48GB GPU -- 3x larger -- without any permanent loss of context information. Our framework achieves an 18.95x speedup in attention decoding for a 1 million token context without requiring additional training. We implement our method in the SGLang framework and demonstrate its effectiveness and practicality through extensive evaluations.
Related papers
- LongRecipe: Recipe for Efficient Long Context Generalization in Large Language Models [72.71150585370147]
LongRecipe is an efficient training strategy for extending the context window of large language models.
It simulates long-sequence inputs while maintaining training efficiency and significantly improves the model's understanding of long-range dependencies.
LongRecipe can utilize long sequences while requiring only 30% of the target context window size, and reduces computational training resource over 85% compared to full sequence training.
arXiv Detail & Related papers (2024-08-31T17:19:30Z) - MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention [36.49445805074941]
MInference (Milliontokens Inference) is a sparse calculation method designed to accelerate pre-filling of long-sequence processing.
We demonstrate that MInference effectively reduces inference latency by up to 10x for pre-filling on an A100, while maintaining accuracy.
arXiv Detail & Related papers (2024-07-02T17:59:56Z) - A Training-free Sub-quadratic Cost Transformer Model Serving Framework With Hierarchically Pruned Attention [43.211427581302715]
We propose Hierarchically Pruned Attention (HiP) to increase context length in large language models.
HiP reduces the time complexity of the attention mechanism to $O(T log T)$ and the space complexity to $O(T)$, where $T$ is the sequence length.
We show that HiP significantly reduces both prefill and decoding latencies, as well as memory usage, while maintaining high-quality generation with minimal degradation.
arXiv Detail & Related papers (2024-06-14T08:32:45Z) - SirLLM: Streaming Infinite Retentive LLM [74.40196814292426]
Large Language Models (LLMs) process inputs of any length and maintain a degree of memory.
Recent efforts have employed streaming inputs to alleviate the pressure of excessively long text inputs.
We introduce Streaming Infinite Retentive LLM (SirLLM), which allows LLMs to maintain longer memory during infinite-length dialogues.
arXiv Detail & Related papers (2024-05-21T06:37:03Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
We present Hierarchical cOntext MERging (HOMER), a new training-free scheme designed to overcome the limitations of large language models.
HomeR uses a divide-and-conquer algorithm, dividing long inputs into manageable chunks.
A token reduction technique precedes each merging, ensuring memory usage efficiency.
arXiv Detail & Related papers (2024-04-16T06:34:08Z) - InfLLM: Training-Free Long-Context Extrapolation for LLMs with an Efficient Context Memory [93.20588235940453]
In this paper, we introduce a training-free memory-based method, InfLLM.
InfLLM stores distant contexts into additional memory units and employs an efficient mechanism to lookup token-relevant units for attention.
Even when the sequence length is scaled to $1,024$K, InfLLM still effectively captures long-distance dependencies.
arXiv Detail & Related papers (2024-02-07T06:50:42Z) - LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models [83.98062659664785]
Large language models (LLMs) typically train on short text segments (e.g., 4K tokens) due to the quadratic complexity of their Transformer architectures.
This work identifies three major factors contributing to this length generalization failure.
We propose LM-Infinite, a simple and effective method for enhancing LLMs' capabilities of handling long contexts.
arXiv Detail & Related papers (2023-08-30T16:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.