Finite-Time Analysis of Discrete-Time Stochastic Interpolants
- URL: http://arxiv.org/abs/2502.09130v1
- Date: Thu, 13 Feb 2025 10:07:35 GMT
- Title: Finite-Time Analysis of Discrete-Time Stochastic Interpolants
- Authors: Yuhao Liu, Yu Chen, Rui Hu, Longbo Huang,
- Abstract summary: We present the first discrete-time analysis of the interpolant framework, where we derive a finite-time upper bound on its distribution estimation error.
Our result provides a novel way to design efficient schedules for convergence acceleration.
- Score: 32.27430900126022
- License:
- Abstract: The stochastic interpolant framework offers a powerful approach for constructing generative models based on ordinary differential equations (ODEs) or stochastic differential equations (SDEs) to transform arbitrary data distributions. However, prior analyses of this framework have primarily focused on the continuous-time setting, assuming a perfect solution of the underlying equations. In this work, we present the first discrete-time analysis of the stochastic interpolant framework, where we introduce an innovative discrete-time sampler and derive a finite-time upper bound on its distribution estimation error. Our result provides a novel quantification of how different factors, including the distance between source and target distributions and estimation accuracy, affect the convergence rate and also offers a new principled way to design efficient schedules for convergence acceleration. Finally, numerical experiments are conducted on the discrete-time sampler to corroborate our theoretical findings.
Related papers
- Sampling in High-Dimensions using Stochastic Interpolants and Forward-Backward Stochastic Differential Equations [8.509310102094512]
We present a class of diffusion-based algorithms to draw samples from high-dimensional probability distributions.
Our approach relies on the interpolants framework to define a time-indexed collection of probability densities.
We demonstrate that our algorithm can effectively draw samples from distributions that conventional methods struggle to handle.
arXiv Detail & Related papers (2025-02-01T07:27:11Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Stochastic Interpolants: A Unifying Framework for Flows and Diffusions [16.95541777254722]
A class of generative models that unifies flow-based and diffusion-based methods is introduced.
These models extend the framework proposed in Albergo & VandenEijnden (2023), enabling the use of a broad class of continuous-time processes called stochastic interpolants'
These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way.
arXiv Detail & Related papers (2023-03-15T17:43:42Z) - Scalable Dynamic Mixture Model with Full Covariance for Probabilistic
Traffic Forecasting [16.04029885574568]
We propose a dynamic mixture of zero-mean Gaussian distributions for the time-varying error process.
The proposed method can be seamlessly integrated into existing deep-learning frameworks with only a few additional parameters to be learned.
We evaluate the proposed method on a traffic speed forecasting task and find that our method not only improves model horizons but also provides interpretabletemporal correlation structures.
arXiv Detail & Related papers (2022-12-10T22:50:00Z) - Building Normalizing Flows with Stochastic Interpolants [11.22149158986164]
A simple generative quadratic model based on a continuous-time normalizing flow between any pair of base and target distributions is proposed.
The velocity field of this flow is inferred from the probability current of a time-dependent distribution that interpolates between the base and the target in finite time.
arXiv Detail & Related papers (2022-09-30T16:30:31Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.