Multimodal HIE Lesion Segmentation in Neonates: A Comparative Study of Loss Functions
- URL: http://arxiv.org/abs/2502.09148v1
- Date: Thu, 13 Feb 2025 10:23:45 GMT
- Title: Multimodal HIE Lesion Segmentation in Neonates: A Comparative Study of Loss Functions
- Authors: Annayah Usman, Abdul Haseeb, Tahir Syed,
- Abstract summary: We implement a 3D U-Net with optimized preprocessing, augmentation, and training strategies to overcome data constraints.
The goal of this study is to identify the optimal loss function specifically for the HIE lesion segmentation task.
Dice, Dice-Focal, Tversky, Hausdorff Distance (HausdorffDT) Loss, and two proposed compound losses -- Dice-Focal-HausdorffDT and Tversky-HausdorffDT -- to enhance segmentation performance.
- Score: 0.0
- License:
- Abstract: Segmentation of Hypoxic-Ischemic Encephalopathy (HIE) lesions in neonatal MRI is a crucial but challenging task due to diffuse multifocal lesions with varying volumes and the limited availability of annotated HIE lesion datasets. Using the BONBID-HIE dataset, we implemented a 3D U-Net with optimized preprocessing, augmentation, and training strategies to overcome data constraints. The goal of this study is to identify the optimal loss function specifically for the HIE lesion segmentation task. To this end, we evaluated various loss functions, including Dice, Dice-Focal, Tversky, Hausdorff Distance (HausdorffDT) Loss, and two proposed compound losses -- Dice-Focal-HausdorffDT and Tversky-HausdorffDT -- to enhance segmentation performance. The results show that different loss functions predict distinct segmentation masks, with compound losses outperforming standalone losses. Tversky-HausdorffDT Loss achieves the highest Dice and Normalized Surface Dice scores, while Dice-Focal-HausdorffDT Loss minimizes Mean Surface Distance. This work underscores the significance of task-specific loss function optimization, demonstrating that combining region-based and boundary-aware losses leads to more accurate HIE lesion segmentation, even with limited training data.
Related papers
- Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Boundary Difference Over Union Loss For Medical Image Segmentation [30.75832534753879]
We have developed a simple and effective loss called the Boundary Difference over Union Loss (Boundary DoU Loss) to guide boundary region segmentation.
Our loss only relies on region calculation, making it easy to implement and training stable without needing any additional losses.
arXiv Detail & Related papers (2023-08-01T01:27:34Z) - Robust T-Loss for Medical Image Segmentation [56.524774292536264]
This paper presents a new robust loss function, the T-Loss, for medical image segmentation.
The proposed loss is based on the negative log-likelihood of the Student-t distribution and can effectively handle outliers in the data.
Our experiments show that the T-Loss outperforms traditional loss functions in terms of dice scores on two public medical datasets.
arXiv Detail & Related papers (2023-06-01T14:49:40Z) - A Generalized Surface Loss for Reducing the Hausdorff Distance in
Medical Imaging Segmentation [1.2289361708127877]
We propose a novel loss function to minimize Hausdorff-based metrics with more desirable numerical properties than current methods.
Our loss function outperforms other losses when tested on the LiTS and BraTS datasets using the state-of-the-art nnUNet architecture.
arXiv Detail & Related papers (2023-02-08T04:01:42Z) - Impact of loss function in Deep Learning methods for accurate retinal
vessel segmentation [1.1470070927586016]
We compare Binary Cross Entropy, Dice, Tversky, and Combo loss using the deep learning architectures (i.e. U-Net, Attention U-Net, and Nested UNet) with the DRIVE dataset.
The results showed that there is a significant difference in the selection of loss function.
arXiv Detail & Related papers (2022-06-01T14:47:18Z) - Effect of Prior-based Losses on Segmentation Performance: A Benchmark [7.6857153840014165]
Deep convolutional neural networks (CNNs) have demonstrated state-of-the-art performance for medical image segmentation.
Recent research studies have focused on incorporating prior knowledge such as object shape or boundary, as constraints in the loss function.
In this paper, we establish a benchmark of recent prior-based losses for medical image segmentation.
arXiv Detail & Related papers (2022-01-07T12:27:48Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
We present a novel boundary-aware loss term for semantic segmentation using an inverse-transformation network.
This plug-in loss term complements the cross-entropy loss in capturing boundary transformations.
We analyze the quantitative and qualitative effects of our loss function on three indoor and outdoor segmentation benchmarks.
arXiv Detail & Related papers (2021-04-06T18:52:45Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation [56.343646789922545]
We propose to automate the design of metric-specific loss functions by searching differentiable surrogate losses for each metric.
Experiments on PASCAL VOC and Cityscapes demonstrate that the searched surrogate losses outperform the manually designed loss functions consistently.
arXiv Detail & Related papers (2020-10-15T17:59:08Z) - An Elastic Interaction-Based Loss Function for Medical Image
Segmentation [10.851295591782538]
This paper introduces a long-range elastic interaction-based training strategy for medical image segmentation.
In this strategy, CNN learns the target region under the guidance of the elastic interaction energy between the boundary of the predicted region and that of the actual object.
Experimental results show that our method is able to achieve considerable improvements compared to commonly used pixel-wise loss functions.
arXiv Detail & Related papers (2020-07-06T11:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.