Faster than real-time detection of shot boundaries, sampling structure and dynamic keyframes in video
- URL: http://arxiv.org/abs/2502.09202v1
- Date: Thu, 13 Feb 2025 11:40:46 GMT
- Title: Faster than real-time detection of shot boundaries, sampling structure and dynamic keyframes in video
- Authors: Hannes Fassold,
- Abstract summary: We present a novel algorithm which does all these analysis tasks in an unified way.
The proposed algorithm is extremely robust even for challenging content showing large camera or object motion, flashlights, flicker or low contrast / noise.
- Score: 1.0878040851637998
- License:
- Abstract: The detection of shot boundaries (hardcuts and short dissolves), sampling structure (progressive / interlaced / pulldown) and dynamic keyframes in a video are fundamental video analysis tasks which have to be done before any further high-level analysis tasks. We present a novel algorithm which does all these analysis tasks in an unified way, by utilizing a combination of inter-frame and intra-frame measures derived from the motion field and normalized cross correlation. The algorithm runs four times faster than real-time due to sparse and selective calculation of these measures. An initial evaluation furthermore shows that the proposed algorithm is extremely robust even for challenging content showing large camera or object motion, flashlights, flicker or low contrast / noise.
Related papers
- Understanding Long Videos via LLM-Powered Entity Relation Graphs [51.13422967711056]
GraphVideoAgent is a framework that maps and monitors the evolving relationships between visual entities throughout the video sequence.
Our approach demonstrates remarkable effectiveness when tested against industry benchmarks.
arXiv Detail & Related papers (2025-01-27T10:57:24Z) - DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
This paper proposes a concise, elegant, and robust pipeline to estimate smooth camera trajectories and obtain dense point clouds for casual videos in the wild.
We show that the proposed method achieves state-of-the-art performance in terms of camera pose estimation even in complex dynamic challenge scenes.
arXiv Detail & Related papers (2024-11-20T13:01:16Z) - FrameHopper: Selective Processing of Video Frames in Detection-driven
Real-Time Video Analytics [2.5119455331413376]
Detection-driven real-time video analytics require continuous detection of objects contained in the video frames.
Running these detectors on each and every frame in resource-constrained edge devices is computationally intensive.
We propose an off-line Reinforcement Learning (RL)-based algorithm to determine these skip-lengths.
arXiv Detail & Related papers (2022-03-22T07:05:57Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - rSVDdpd: A Robust Scalable Video Surveillance Background Modelling
Algorithm [13.535770763481905]
We present a new video surveillance background modelling algorithm based on a new robust singular value decomposition technique rSVDdpd.
We also demonstrate the superiority of our proposed algorithm on a benchmark dataset and a new real-life video surveillance dataset in the presence of camera tampering.
arXiv Detail & Related papers (2021-09-22T12:20:44Z) - Temporal Early Exits for Efficient Video Object Detection [1.1470070927586016]
We propose temporal early exits to reduce the computational complexity of per-frame video object detection.
Our method significantly reduces the computational complexity and execution of per-frame video object detection up to $34 times$ compared to existing methods.
arXiv Detail & Related papers (2021-06-21T15:49:46Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
We introduce Time Lens, a novel indicates equal contribution method that leverages the advantages of both synthesis-based and flow-based approaches.
We show an up to 5.21 dB improvement in terms of PSNR over state-of-the-art frame-based and event-based methods.
arXiv Detail & Related papers (2021-06-14T10:33:47Z) - Frame-rate Up-conversion Detection Based on Convolutional Neural Network
for Learning Spatiotemporal Features [7.895528973776606]
This paper proposes a frame-rate conversion detection network (FCDNet) that learns forensic features caused by FRUC in an end-to-end fashion.
FCDNet uses a stack of consecutive frames as the input and effectively learns artifacts using network blocks to learn features.
arXiv Detail & Related papers (2021-03-25T08:47:46Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
We present a novel framework for deblurring, interpolating and extrapolating sharp frames from a motion-blurred video in an end-to-end manner.
To ensure temporal coherence across predicted frames and address potential temporal ambiguity, we propose a simple, yet effective flow-based rule.
arXiv Detail & Related papers (2021-03-04T12:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.