Chirality-induced Spin-Orbit Coupling and Spin Selectivity
- URL: http://arxiv.org/abs/2502.09338v1
- Date: Thu, 13 Feb 2025 13:59:30 GMT
- Title: Chirality-induced Spin-Orbit Coupling and Spin Selectivity
- Authors: Massimiliano Di Ventra, Rafael Gutierrez, Gianaurelio Cuniberti,
- Abstract summary: We show that a spinor traveling along a helical path develops a spin-orbit coupling due to the cur- vature of the path.
We then estimate the magnitude of this eff ective geometric spin-orbit interaction for structures that showcase chiral-induced spin selectivity (CISS)
- Score: 1.8638865257327277
- License:
- Abstract: We show that a spinor traveling along a helical path develops a spin-orbit coupling due to the cur- vature of the path. We then estimate the magnitude of this eff ective geometric spin-orbit interaction for structures that showcase chiral-induced spin selectivity (CISS). We fi nd that this chiral-induced spin-orbit coupling (\chi-SOC), coupled to broken time-reversal symmetry, may provide a simple, yet rigorous way to describe the CISS phenomenon.
Related papers
- Spin Squeezing of Macroscopic Nuclear Spin Ensembles [44.99833362998488]
Squeezing macroscopic spin ensembles may prove to be a useful technique for fundamental physics experiments.
We analyze the squeezing dynamics in the presence of decoherence and finite spin polarization, showing that achieving 7 dB spin squeezing is feasible in several nuclear spin systems.
arXiv Detail & Related papers (2025-02-19T21:16:54Z) - Chirality-induced emergent spin-orbit coupling in topological atomic lattices [0.0]
We show that optical excitations in lattices of V-type atoms exhibit an emergent spin-orbit coupling when the geometry is chiral.
We demonstrate that chirality-induced spin-orbit coupling can result from either the chirality of the underlying lattice geometry or the combination of an achiral lattice with a suitably chosen external quantization axis.
arXiv Detail & Related papers (2023-11-15T19:00:13Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Spin-phonon decoherence in solid-state paramagnetic defects from first
principles [79.4957965474334]
Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them solid-state qubits.
Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available.
We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence.
arXiv Detail & Related papers (2022-12-22T13:48:05Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Precession of entangled spin and pseudospin in double quantum dots [0.0]
Quantum dot spin valves are characterized by exchange fields which induce spin precession and generate current spin resonances.
We generalize this setup to allow for arbitrary spin and orbital polarization of the leads.
We observe for both vectors a delicate interplay of decoherence, pumping and precession which can only be understood by considering the dynamics of the spin-pseudospin correlators.
arXiv Detail & Related papers (2022-02-08T23:00:00Z) - Measurable fractional spin for quantum Hall quasiparticles on the disk [0.0]
We study the spin of the localised quasiparticles of lowest-Landau-level quantum Hall states defined on a disk.
Since it is related to the quadrupole moment of the quasiparticle charge distribution, it can be measured in an experiment.
arXiv Detail & Related papers (2021-12-06T09:53:54Z) - Interface-Induced Conservation of Momentum Leads to Chiral-Induced Spin
Selectivity [1.3124513975412255]
We study the non-equilibrium dynamics of electron transmission from a straight waveguide to a helix with spin-orbit coupling.
The degree of spin selectivity depends on the width of the interface region, and no polarization is found for single-point couplings.
arXiv Detail & Related papers (2021-11-29T18:21:08Z) - Chiral control of quantum states in non-Hermitian spin-orbit-coupled
fermions [6.928292647332275]
We implement dissipative spin-orbit-coupled bands filled with ultracold fermions.
We observe parity-time symmetry breaking as a result of the competition between the spin-orbit coupling and dissipation.
This demonstrates that we can explore non-Hermitian topological states with spin-orbit coupling.
arXiv Detail & Related papers (2021-06-09T07:55:17Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.