Wasserstein distributional adversarial training for deep neural networks
- URL: http://arxiv.org/abs/2502.09352v1
- Date: Thu, 13 Feb 2025 14:18:41 GMT
- Title: Wasserstein distributional adversarial training for deep neural networks
- Authors: Xingjian Bai, Guangyi He, Yifan Jiang, Jan Obloj,
- Abstract summary: We propose methods to train against distributional attack threats.
We introduce an efficient fine-tuning method which can be deployed on a previously trained model.
We test our methods on a range of pre-trained models on RobustBench.
- Score: 4.0984142455934345
- License:
- Abstract: Design of adversarial attacks for deep neural networks, as well as methods of adversarial training against them, are subject of intense research. In this paper, we propose methods to train against distributional attack threats, extending the TRADES method used for pointwise attacks. Our approach leverages recent contributions and relies on sensitivity analysis for Wasserstein distributionally robust optimization problems. We introduce an efficient fine-tuning method which can be deployed on a previously trained model. We test our methods on a range of pre-trained models on RobustBench. These experimental results demonstrate the additional training enhances Wasserstein distributional robustness, while maintaining original levels of pointwise robustness, even for already very successful networks. The improvements are less marked for models pre-trained using huge synthetic datasets of 20-100M images. However, remarkably, sometimes our methods are still able to improve their performance even when trained using only the original training dataset (50k images).
Related papers
- Fast Propagation is Better: Accelerating Single-Step Adversarial
Training via Sampling Subnetworks [69.54774045493227]
A drawback of adversarial training is the computational overhead introduced by the generation of adversarial examples.
We propose to exploit the interior building blocks of the model to improve efficiency.
Compared with previous methods, our method not only reduces the training cost but also achieves better model robustness.
arXiv Detail & Related papers (2023-10-24T01:36:20Z) - CAT:Collaborative Adversarial Training [80.55910008355505]
We propose a collaborative adversarial training framework to improve the robustness of neural networks.
Specifically, we use different adversarial training methods to train robust models and let models interact with their knowledge during the training process.
Cat achieves state-of-the-art adversarial robustness without using any additional data on CIFAR-10 under the Auto-Attack benchmark.
arXiv Detail & Related papers (2023-03-27T05:37:43Z) - Adversarial Coreset Selection for Efficient Robust Training [11.510009152620666]
We show how selecting a small subset of training data provides a principled approach to reducing the time complexity of robust training.
We conduct extensive experiments to demonstrate that our approach speeds up adversarial training by 2-3 times.
arXiv Detail & Related papers (2022-09-13T07:37:53Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
We propose Branch Orthogonality adveRsarial Training (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training.
We evaluate our approach on CIFAR-10, CIFAR-100, and SVHN against ell_infty norm-bounded perturbations of size epsilon = 8/255, respectively.
arXiv Detail & Related papers (2022-08-17T05:42:59Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
We propose a simple yet very effective adversarial fine-tuning approach based on a $textitslow start, fast decay$ learning rate scheduling strategy.
Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets.
arXiv Detail & Related papers (2020-12-25T20:50:15Z) - Self-Progressing Robust Training [146.8337017922058]
Current robust training methods such as adversarial training explicitly uses an "attack" to generate adversarial examples.
We propose a new framework called SPROUT, self-progressing robust training.
Our results shed new light on scalable, effective and attack-independent robust training methods.
arXiv Detail & Related papers (2020-12-22T00:45:24Z) - Efficient Robust Training via Backward Smoothing [125.91185167854262]
Adversarial training is the most effective strategy in defending against adversarial examples.
It suffers from high computational costs due to the iterative adversarial attacks in each training step.
Recent studies show that it is possible to achieve fast Adversarial Training by performing a single-step attack.
arXiv Detail & Related papers (2020-10-03T04:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.