Rolling Ahead Diffusion for Traffic Scene Simulation
- URL: http://arxiv.org/abs/2502.09587v1
- Date: Thu, 13 Feb 2025 18:45:56 GMT
- Title: Rolling Ahead Diffusion for Traffic Scene Simulation
- Authors: Yunpeng Liu, Matthew Niedoba, William Harvey, Adam Scibior, Berend Zwartsenberg, Frank Wood,
- Abstract summary: Realistic driving simulation requires that NPCs not only mimic natural driving behaviors but also react to the behavior of other simulated agents.
Recent developments in diffusion-based scenario generation focus on creating diverse and realistic traffic scenarios.
We present a rolling diffusion based traffic scene generation model which mixes the benefits of both methods.
- Score: 13.900806577888861
- License:
- Abstract: Realistic driving simulation requires that NPCs not only mimic natural driving behaviors but also react to the behavior of other simulated agents. Recent developments in diffusion-based scenario generation focus on creating diverse and realistic traffic scenarios by jointly modelling the motion of all the agents in the scene. However, these traffic scenarios do not react when the motion of agents deviates from their modelled trajectories. For example, the ego-agent can be controlled by a stand along motion planner. To produce reactive scenarios with joint scenario models, the model must regenerate the scenario at each timestep based on new observations in a Model Predictive Control (MPC) fashion. Although reactive, this method is time-consuming, as one complete possible future for all NPCs is generated per simulation step. Alternatively, one can utilize an autoregressive model (AR) to predict only the immediate next-step future for all NPCs. Although faster, this method lacks the capability for advanced planning. We present a rolling diffusion based traffic scene generation model which mixes the benefits of both methods by predicting the next step future and simultaneously predicting partially noised further future steps at the same time. We show that such model is efficient compared to diffusion model based AR, achieving a beneficial compromise between reactivity and computational efficiency.
Related papers
- Vectorized Representation Dreamer (VRD): Dreaming-Assisted Multi-Agent Motion-Forecasting [2.2020053359163305]
We introduce VRD, a vectorized world model-inspired approach to the multi-agent motion forecasting problem.
Our method combines a traditional open-loop training regime with a novel dreamed closed-loop training pipeline.
Our model achieves state-of-the-art performance on the single prediction miss rate metric.
arXiv Detail & Related papers (2024-06-20T15:34:17Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Tractable Joint Prediction and Planning over Discrete Behavior Modes for
Urban Driving [15.671811785579118]
We show that we can parameterize autoregressive closed-loop models without retraining.
We propose fully reactive closed-loop planning over discrete latent modes.
Our approach also outperforms the previous state-of-the-art in CARLA on challenging dense traffic scenarios.
arXiv Detail & Related papers (2024-03-12T01:00:52Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - SceneDM: Scene-level Multi-agent Trajectory Generation with Consistent
Diffusion Models [10.057312592344507]
We propose a novel framework based on diffusion models, called SceneDM, to generate joint and consistent future motions of all the agents in a scene.
SceneDM achieves state-of-the-art results on the Sim Agents Benchmark.
arXiv Detail & Related papers (2023-11-27T11:39:27Z) - A Diffusion-Model of Joint Interactive Navigation [14.689298253430568]
We present DJINN - a diffusion based method of generating traffic scenarios.
Our approach jointly diffuses the trajectories of all agents, conditioned on a flexible set of state observations from the past, present, or future.
We show how DJINN flexibly enables direct test-time sampling from a variety of valuable conditional distributions.
arXiv Detail & Related papers (2023-09-21T22:10:20Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.