Algorithmic contiguity from low-degree conjecture and applications in correlated random graphs
- URL: http://arxiv.org/abs/2502.09832v1
- Date: Fri, 14 Feb 2025 00:24:51 GMT
- Title: Algorithmic contiguity from low-degree conjecture and applications in correlated random graphs
- Authors: Zhangsong Li,
- Abstract summary: We provide evidence of computational hardness for two problems.
One of the main ingredient in our proof is to derive certain forms of emphalgorithm contiguity between two probability measures.
This framework provides a useful tool for performing reductions between different tasks.
- Score: 0.0
- License:
- Abstract: In this paper, assuming a natural strengthening of the low-degree conjecture, we provide evidence of computational hardness for two problems: (1) the (partial) matching recovery problem in the sparse correlated Erd\H{o}s-R\'enyi graphs $\mathcal G(n,q;\rho)$ when the edge-density $q=n^{-1+o(1)}$ and the correlation $\rho<\sqrt{\alpha}$ lies below the Otter's threshold, solving a remaining problem in \cite{DDL23+}; (2) the detection problem between the correlated sparse stochastic block model $\mathcal S(n,\tfrac{\lambda}{n};k,\epsilon;s)$ and a pair of independent stochastic block models $\mathcal S(n,\tfrac{\lambda s}{n};k,\epsilon)$ when $\epsilon^2 \lambda s<1$ lies below the Kesten-Stigum (KS) threshold and $s<\sqrt{\alpha}$ lies below the Otter's threshold, solving a remaining problem in \cite{CDGL24+}. One of the main ingredient in our proof is to derive certain forms of \emph{algorithmic contiguity} between two probability measures based on bounds on their low-degree advantage. To be more precise, consider the high-dimensional hypothesis testing problem between two probability measures $\mathbb{P}$ and $\mathbb{Q}$ based on the sample $\mathsf Y$. We show that if the low-degree advantage $\mathsf{Adv}_{\leq D} \big( \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}} \big)=O(1)$, then (assuming the low-degree conjecture) there is no efficient algorithm $\mathcal A$ such that $\mathbb{Q}(\mathcal A(\mathsf Y)=0)=1-o(1)$ and $\mathbb{P}(\mathcal A(\mathsf Y)=1)=\Omega(1)$. This framework provides a useful tool for performing reductions between different inference tasks.
Related papers
- Learning a Single Neuron Robustly to Distributional Shifts and Adversarial Label Noise [38.551072383777594]
We study the problem of learning a single neuron with respect to the $L2$ loss in the presence of adversarial distribution shifts.
A new algorithm is developed to approximate the vector vector squared loss with respect to the worst distribution that is in the $chi2$divergence to the $mathcalp_0$.
arXiv Detail & Related papers (2024-11-11T03:43:52Z) - The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - A computational transition for detecting correlated stochastic block models by low-degree polynomials [13.396246336911842]
Detection of correlation in a pair of random graphs is a fundamental statistical and computational problem that has been extensively studied in recent years.
We consider a pair of correlated block models $mathcalS(n,tfraclambdan;k,epsilon;s)$ that are subsampled from a common parent block model $mathcal S(n,tfraclambdan;k,epsilon;s)$
We focus on tests based on emphlow-degrees of the entries of the adjacency
arXiv Detail & Related papers (2024-09-02T06:14:05Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - SQ Lower Bounds for Learning Mixtures of Linear Classifiers [43.63696593768504]
We show that known algorithms for this problem are essentially best possible, even for the special case of uniform mixtures.
The key technical ingredient is a new construction of spherical designs that may be of independent interest.
arXiv Detail & Related papers (2023-10-18T10:56:57Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
We study the problem of PAC learning halfspaces on $mathbbRd$ with Massart noise under Gaussian marginals.
Our results qualitatively characterize the complexity of learning halfspaces in the Massart model.
arXiv Detail & Related papers (2021-08-19T16:16:48Z) - Optimal Mean Estimation without a Variance [103.26777953032537]
We study the problem of heavy-tailed mean estimation in settings where the variance of the data-generating distribution does not exist.
We design an estimator which attains the smallest possible confidence interval as a function of $n,d,delta$.
arXiv Detail & Related papers (2020-11-24T22:39:21Z) - Algorithms and Hardness for Linear Algebra on Geometric Graphs [14.822517769254352]
We show that the exponential dependence on the dimension dimension $d in the celebrated fast multipole method of Greengard and Rokhlin cannot be improved.
This is the first formal limitation proven about fast multipole methods.
arXiv Detail & Related papers (2020-11-04T18:35:02Z) - Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and
ReLUs under Gaussian Marginals [49.60752558064027]
We study the fundamental problems of agnostically learning halfspaces and ReLUs under Gaussian marginals.
Our lower bounds provide strong evidence that current upper bounds for these tasks are essentially best possible.
arXiv Detail & Related papers (2020-06-29T17:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.