Compression-Aware One-Step Diffusion Model for JPEG Artifact Removal
- URL: http://arxiv.org/abs/2502.09873v2
- Date: Wed, 19 Feb 2025 21:00:01 GMT
- Title: Compression-Aware One-Step Diffusion Model for JPEG Artifact Removal
- Authors: Jinpei Guo, Zheng Chen, Wenbo Li, Yong Guo, Yulun Zhang,
- Abstract summary: CODiff is a compression-aware one-step diffusion model for JPEG artifact removal.
We propose a dual learning strategy that combines explicit and implicit learning.
Results demonstrate that CODiff surpasses recent leading methods in both quantitative and visual quality metrics.
- Score: 56.307484956135355
- License:
- Abstract: Diffusion models have demonstrated remarkable success in image restoration tasks. However, their multi-step denoising process introduces significant computational overhead, limiting their practical deployment. Furthermore, existing methods struggle to effectively remove severe JPEG artifact, especially in highly compressed images. To address these challenges, we propose CODiff, a compression-aware one-step diffusion model for JPEG artifact removal. The core of CODiff is the compression-aware visual embedder (CaVE), which extracts and leverages JPEG compression priors to guide the diffusion model. We propose a dual learning strategy that combines explicit and implicit learning. Specifically, explicit learning enforces a quality prediction objective to differentiate low-quality images with different compression levels. Implicit learning employs a reconstruction objective that enhances the model's generalization. This dual learning allows for a deeper and more comprehensive understanding of JPEG compression. Experimental results demonstrate that CODiff surpasses recent leading methods in both quantitative and visual quality metrics. The code and models will be released at https://github.com/jp-guo/CODiff.
Related papers
- CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.
We propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations.
During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT)
RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time.
arXiv Detail & Related papers (2024-12-23T10:41:18Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - High-Fidelity Variable-Rate Image Compression via Invertible Activation
Transformation [24.379052026260034]
We propose the Invertible Activation Transformation (IAT) module to tackle the issue of high-fidelity fine variable-rate image compression.
IAT and QLevel together give the image compression model the ability of fine variable-rate control while better maintaining the image fidelity.
Our method outperforms the state-of-the-art variable-rate image compression method by a large margin, especially after multiple re-encodings.
arXiv Detail & Related papers (2022-09-12T07:14:07Z) - Learned Lossless Image Compression With Combined Autoregressive Models
And Attention Modules [22.213840578221678]
Lossless image compression is an essential research field in image compression.
Recent learning-based image compression methods achieved impressive performance.
In this paper, we explore the methods widely used in lossy compression and apply them to lossless compression.
arXiv Detail & Related papers (2022-08-30T03:27:05Z) - Analyzing and Mitigating JPEG Compression Defects in Deep Learning [69.04777875711646]
We present a unified study of the effects of JPEG compression on a range of common tasks and datasets.
We show that there is a significant penalty on common performance metrics for high compression.
arXiv Detail & Related papers (2020-11-17T20:32:57Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.