AffectSRNet : Facial Emotion-Aware Super-Resolution Network
- URL: http://arxiv.org/abs/2502.09932v1
- Date: Fri, 14 Feb 2025 06:02:59 GMT
- Title: AffectSRNet : Facial Emotion-Aware Super-Resolution Network
- Authors: Syed Sameen Ahmad Rizvi, Soham Kumar, Aryan Seth, Pratik Narang,
- Abstract summary: We propose AffectSRNet, a novel emotion-aware super-resolution framework for facial expression recognition.
Our method bridges the gap between image resolution and expression accuracy by employing an expression-preserving loss function.
We show that AffectSRNet outperforms existing FSR approaches in both visual quality and emotion fidelity.
- Score: 5.295131292624206
- License:
- Abstract: Facial expression recognition (FER) systems in low-resolution settings face significant challenges in accurately identifying expressions due to the loss of fine-grained facial details. This limitation is especially problematic for applications like surveillance and mobile communications, where low image resolution is common and can compromise recognition accuracy. Traditional single-image face super-resolution (FSR) techniques, however, often fail to preserve the emotional intent of expressions, introducing distortions that obscure the original affective content. Given the inherently ill-posed nature of single-image super-resolution, a targeted approach is required to balance image quality enhancement with emotion retention. In this paper, we propose AffectSRNet, a novel emotion-aware super-resolution framework that reconstructs high-quality facial images from low-resolution inputs while maintaining the intensity and fidelity of facial expressions. Our method effectively bridges the gap between image resolution and expression accuracy by employing an expression-preserving loss function, specifically tailored for FER applications. Additionally, we introduce a new metric to assess emotion preservation in super-resolved images, providing a more nuanced evaluation of FER system performance in low-resolution scenarios. Experimental results on standard datasets, including CelebA, FFHQ, and Helen, demonstrate that AffectSRNet outperforms existing FSR approaches in both visual quality and emotion fidelity, highlighting its potential for integration into practical FER applications. This work not only improves image clarity but also ensures that emotion-driven applications retain their core functionality in suboptimal resolution environments, paving the way for broader adoption in FER systems.
Related papers
- W-Net: A Facial Feature-Guided Face Super-Resolution Network [8.037821981254389]
Face Super-Resolution aims to recover high-resolution (HR) face images from low-resolution (LR) ones.
Existing approaches are not ideal due to their low reconstruction efficiency and insufficient utilization of prior information.
This paper proposes a novel network architecture called W-Net to address this challenge.
arXiv Detail & Related papers (2024-06-02T09:05:40Z) - Dynamic Resolution Guidance for Facial Expression Recognition [2.0456513832600884]
This paper introduces a practical method called Dynamic Resolution Guidance for Facial Expression Recognition (DRGFER)
Our framework comprises two main components: the Resolution Recognition Network (RRN) and the Multi-Resolution Adaptation Facial Expression Recognition Network (MRAFER)
The proposed framework exhibits robustness against resolution variations and facial expressions, offering a promising solution for real-world applications.
arXiv Detail & Related papers (2024-04-09T15:02:01Z) - CoSeR: Bridging Image and Language for Cognitive Super-Resolution [74.24752388179992]
We introduce the Cognitive Super-Resolution (CoSeR) framework, empowering SR models with the capacity to comprehend low-resolution images.
We achieve this by marrying image appearance and language understanding to generate a cognitive embedding.
To further improve image fidelity, we propose a novel condition injection scheme called "All-in-Attention"
arXiv Detail & Related papers (2023-11-27T16:33:29Z) - Octuplet Loss: Make Face Recognition Robust to Image Resolution [5.257115841810258]
We propose a novel combination of the popular triplet loss to improve robustness against image resolution.
We leverage the relationship between high-resolution images and their synthetically down-sampled variants jointly with their identity labels.
Fine-tuning several state-of-the-art approaches with our method proves that we can significantly boost performance for cross-resolution (high-to-low resolution) face verification.
arXiv Detail & Related papers (2022-07-14T08:22:58Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Textural-Structural Joint Learning for No-Reference Super-Resolution
Image Quality Assessment [59.91741119995321]
We develop a dual stream network to jointly explore the textural and structural information for quality prediction, dubbed TSNet.
By mimicking the human vision system (HVS) that pays more attention to the significant areas of the image, we develop the spatial attention mechanism to make the visual-sensitive areas more distinguishable.
Experimental results show the proposed TSNet predicts the visual quality more accurate than the state-of-the-art IQA methods, and demonstrates better consistency with the human's perspective.
arXiv Detail & Related papers (2022-05-27T09:20:06Z) - SelFSR: Self-Conditioned Face Super-Resolution in the Wild via Flow
Field Degradation Network [12.976199676093442]
We propose a novel domain-adaptive degradation network for face super-resolution in the wild.
Our model achieves state-of-the-art performance on both CelebA and real-world face dataset.
arXiv Detail & Related papers (2021-12-20T17:04:00Z) - LR-to-HR Face Hallucination with an Adversarial Progressive
Attribute-Induced Network [67.64536397027229]
Face super-resolution is a challenging and highly ill-posed problem.
We propose an end-to-end progressive learning framework incorporating facial attributes.
We show that the proposed approach can yield satisfactory face hallucination images outperforming other state-of-the-art approaches.
arXiv Detail & Related papers (2021-09-29T19:50:45Z) - Network Architecture Search for Face Enhancement [82.25775020564654]
We present a multi-task face restoration network, called Network Architecture Search for Face Enhancement (NASFE)
NASFE can enhance poor quality face images containing a single degradation (i.e. noise or blur) or multiple degradations (noise+blur+low-light)
arXiv Detail & Related papers (2021-05-13T19:46:05Z) - HiFaceGAN: Face Renovation via Collaborative Suppression and
Replenishment [63.333407973913374]
"Face Renovation"(FR) is a semantic-guided generation problem.
"HiFaceGAN" is a multi-stage framework containing several nested CSR units.
experiments on both synthetic and real face images have verified the superior performance of HiFaceGAN.
arXiv Detail & Related papers (2020-05-11T11:33:17Z) - Feature Super-Resolution Based Facial Expression Recognition for
Multi-scale Low-Resolution Faces [7.634398926381845]
Super-resolution method is often used to enhance low-resolution images, but the performance on FER task is limited when on images of very low resolution.
In this work, inspired by feature super-resolution methods for object detection, we proposed a novel generative adversary network-based super-resolution method for robust facial expression recognition.
arXiv Detail & Related papers (2020-04-05T15:38:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.