Large Language Diffusion Models
- URL: http://arxiv.org/abs/2502.09992v2
- Date: Tue, 18 Feb 2025 16:08:59 GMT
- Title: Large Language Diffusion Models
- Authors: Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong Wen, Chongxuan Li,
- Abstract summary: Autoregressive models (ARMs) are widely regarded as the cornerstone of large language models (LLMs)
We introduce LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning paradigm.
Across extensive benchmarks, LLaDA demonstrates strong scalability, outperforming our self-constructed ARM baselines.
- Score: 77.02553707673418
- License:
- Abstract: Autoregressive models (ARMs) are widely regarded as the cornerstone of large language models (LLMs). We challenge this notion by introducing LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning (SFT) paradigm. LLaDA models distributions through a forward data masking process and a reverse process, parameterized by a vanilla Transformer to predict masked tokens. By optimizing a likelihood bound, it provides a principled generative approach for probabilistic inference. Across extensive benchmarks, LLaDA demonstrates strong scalability, outperforming our self-constructed ARM baselines. Remarkably, LLaDA 8B is competitive with strong LLMs like LLaMA3 8B in in-context learning and, after SFT, exhibits impressive instruction-following abilities in case studies such as multi-turn dialogue. Moreover, LLaDA addresses the reversal curse, surpassing GPT-4o in a reversal poem completion task. Our findings establish diffusion models as a viable and promising alternative to ARMs, challenging the assumption that key LLM capabilities discussed above are inherently tied to ARMs. Project page and codes: https://ml-gsai.github.io/LLaDA-demo/.
Related papers
- Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.
LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space.
LTMs significantly outperform conventional autoregressive models and discrete diffusion models in validation perplexity and zero-shot language modeling.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection [49.15148871877941]
Next-token distribution outputs offer a theoretically appealing approach for detection of large language models (LLMs)
We propose the Perplexity Attention Weighted Network (PAWN), which uses the last hidden states of the LLM and positions to weight the sum of a series of features based on metrics from the next-token distribution across the sequence length.
PAWN shows competitive and even better performance in-distribution than the strongest baselines with a fraction of their trainable parameters.
arXiv Detail & Related papers (2025-01-07T17:00:49Z) - Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps.
We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution.
We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures.
arXiv Detail & Related papers (2024-11-06T22:02:30Z) - Scaling Diffusion Language Models via Adaptation from Autoregressive Models [105.70889434492143]
Diffusion Language Models (DLMs) have emerged as a promising new paradigm for text generative modeling.
We show that we can convert AR models ranging from 127M to 7B parameters into diffusion models DiffuGPT and DiffuLLaMA, using less than 200B tokens for training.
Our experimental results reveal that these models outperform earlier DLMs and are competitive with their AR counterparts.
arXiv Detail & Related papers (2024-10-23T14:04:22Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning [29.72531930169291]
Self-Distillation Fine-Tuning (SDFT) is a novel approach that bridges the distribution gap by guiding fine-tuning with a distilled dataset generated by the model itself to match its original distribution.
Experimental results on the Llama-2-chat model across various benchmarks demonstrate that SDFT effectively mitigates catastrophic forgetting.
arXiv Detail & Related papers (2024-02-21T10:06:08Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators.
Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs.
Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT.
arXiv Detail & Related papers (2023-10-24T03:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.