AffinityFlow: Guided Flows for Antibody Affinity Maturation
- URL: http://arxiv.org/abs/2502.10365v2
- Date: Mon, 17 Feb 2025 11:45:52 GMT
- Title: AffinityFlow: Guided Flows for Antibody Affinity Maturation
- Authors: Can Chen, Karla-Luise Herpoldt, Chenchao Zhao, Zichen Wang, Marcus Collins, Shang Shang, Ron Benson,
- Abstract summary: Antibodies are widely used as therapeutics, but their development requires affinity maturation to enhance binding affinity.
Recently AlphaFlow wraps AlphaFold within flow matching to generate diverse protein structures, enabling a sequence-conditioned generative model of structure.
We propose an alternating optimization framework that (1) fixes the sequence to guide structure generation toward high binding affinity using a structure-based affinity predictor, then (2) applies inverse folding to create sequence mutations, refined by a sequence-based affinity predictor for post selection.
- Score: 6.690846683150576
- License:
- Abstract: Antibodies are widely used as therapeutics, but their development requires costly affinity maturation, involving iterative mutations to enhance binding affinity.This paper explores a sequence-only scenario for affinity maturation, using solely antibody and antigen sequences. Recently AlphaFlow wraps AlphaFold within flow matching to generate diverse protein structures, enabling a sequence-conditioned generative model of structure. Building on this, we propose an alternating optimization framework that (1) fixes the sequence to guide structure generation toward high binding affinity using a structure-based affinity predictor, then (2) applies inverse folding to create sequence mutations, refined by a sequence-based affinity predictor for post selection. A key challenge is the lack of labeled data for training both predictors. To address this, we develop a co-teaching module that incorporates valuable information from noisy biophysical energies into predictor refinement. The sequence-based predictor selects consensus samples to teach the structure-based predictor, and vice versa. Our method, AffinityFlow, achieves state-of-the-art performance in affinity maturation experiments. We plan to open-source our code after acceptance.
Related papers
- FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction [3.8366697175402225]
FlowDock is the first deep geometric generative model that learns to map unbound (apo) structures to their bound (holo) counterparts.
FlowDock provides predicted structural confidence scores and binding affinity values with each of its generated protein-ligand complex structures.
arXiv Detail & Related papers (2024-12-14T20:54:37Z) - Active learning for affinity prediction of antibodies [45.58662352490961]
For large molecules such as antibodies, identifying mutations that enhance antibody affinity is challenging.
FERB methods can offer valuable insights into how different mutations will impact the potency and selectivity of a drug candidate.
We present an active learning framework that iteratively proposes sequences for simulators to evaluate, thereby accelerating the search for improved binders.
arXiv Detail & Related papers (2024-06-11T13:42:49Z) - Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
We introduce FoldFlow-2, a novel sequence-conditioned flow matching model for protein structure generation.
We train FoldFlow-2 at scale on a new dataset that is an order of magnitude larger than PDB datasets of prior works.
We empirically observe that FoldFlow-2 outperforms previous state-of-the-art protein structure-based generative models.
arXiv Detail & Related papers (2024-05-30T17:53:50Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - Decoupled Sequence and Structure Generation for Realistic Antibody Design [45.72237864940556]
A dominant paradigm is to train a model to jointly generate the antibody sequence and the structure as a candidate.
We propose an antibody sequence-structure decoupling (ASSD) framework, which separates sequence generation and structure prediction.
ASSD shows improved performance in various antibody design experiments, while the composition-based objective successfully mitigates token repetition of non-autoregressive models.
arXiv Detail & Related papers (2024-02-08T13:02:05Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - Reprogramming Pretrained Language Models for Antibody Sequence Infilling [72.13295049594585]
Computational design of antibodies involves generating novel and diverse sequences, while maintaining structural consistency.
Recent deep learning models have shown impressive results, however the limited number of known antibody sequence/structure pairs frequently leads to degraded performance.
In our work we address this challenge by leveraging Model Reprogramming (MR), which repurposes pretrained models on a source language to adapt to the tasks that are in a different language and have scarce data.
arXiv Detail & Related papers (2022-10-05T20:44:55Z) - Unsupervisedly Prompting AlphaFold2 for Few-Shot Learning of Accurate
Folding Landscape and Protein Structure Prediction [28.630603355510324]
We present EvoGen, a meta generative model, to remedy the underperformance of AlphaFold2 for poor MSA targets.
By prompting the model with calibrated or virtually generated homologue sequences, EvoGen helps AlphaFold2 fold accurately in low-data regime.
arXiv Detail & Related papers (2022-08-20T10:23:17Z) - Iterative Refinement Graph Neural Network for Antibody
Sequence-Structure Co-design [35.215029426177004]
We propose a generative model to automatically design antibodies with enhanced binding specificity or neutralization capabilities.
Our method achieves superior log-likelihood on the test set and outperforms previous baselines in designing antibodies capable of neutralizing the SARS-CoV-2 virus.
arXiv Detail & Related papers (2021-10-09T18:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.