ProMRVL-CAD: Proactive Dialogue System with Multi-Round Vision-Language Interactions for Computer-Aided Diagnosis
- URL: http://arxiv.org/abs/2502.10620v1
- Date: Sat, 15 Feb 2025 01:14:23 GMT
- Title: ProMRVL-CAD: Proactive Dialogue System with Multi-Round Vision-Language Interactions for Computer-Aided Diagnosis
- Authors: Xueshen Li, Xinlong Hou, Ziyi Huang, Yu Gan,
- Abstract summary: We develop an LLM-based dialogue system, namely proactive multi-round vision-language interactions for computer-aided diagnosis (ProMRVL-CAD)
The proposed ProMRVL-CAD system allows proactive dialogue to provide patients with constant and reliable medical access via an integration of knowledge graph into a recommendation system.
- Score: 0.7430974817507225
- License:
- Abstract: Recent advancements in large language models (LLMs) have demonstrated extraordinary comprehension capabilities with remarkable breakthroughs on various vision-language tasks. However, the application of LLMs in generating reliable medical diagnostic reports remains in the early stages. Currently, medical LLMs typically feature a passive interaction model where doctors respond to patient queries with little or no involvement in analyzing medical images. In contrast, some ChatBots simply respond to predefined queries based on visual inputs, lacking interactive dialogue or consideration of medical history. As such, there is a gap between LLM-generated patient-ChatBot interactions and those occurring in actual patient-doctor consultations. To bridge this gap, we develop an LLM-based dialogue system, namely proactive multi-round vision-language interactions for computer-aided diagnosis (ProMRVL-CAD), to generate patient-friendly disease diagnostic reports. The proposed ProMRVL-CAD system allows proactive dialogue to provide patients with constant and reliable medical access via an integration of knowledge graph into a recommendation system. Specifically, we devise two generators: a Proactive Question Generator (Pro-Q Gen) to generate proactive questions that guide the diagnostic procedure and a Multi-Vision Patient-Text Diagnostic Report Generator (MVP-DR Gen) to produce high-quality diagnostic reports. Evaluating two real-world publicly available datasets, MIMIC-CXR and IU-Xray, our model has better quality in generating medical reports. We further demonstrate the performance of ProMRVL achieves robust under the scenarios with low image quality. Moreover, we have created a synthetic medical dialogue dataset that simulates proactive diagnostic interactions between patients and doctors, serving as a valuable resource for training LLM.
Related papers
- A Two-Stage Proactive Dialogue Generator for Efficient Clinical Information Collection Using Large Language Model [0.6926413609535759]
We propose a diagnostic dialogue system to automate the patient information collection procedure.
By exploiting medical history and conversation logic, our conversation agents can pose multi-round clinical queries.
Our experimental results on a real-world medical conversation dataset show that our model can generate clinical queries that mimic the conversation style of real doctors.
arXiv Detail & Related papers (2024-10-02T19:32:11Z) - D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions [8.50767187405446]
We propose D-Rax -- a domain-specific, conversational, radiologic assistance tool.
We enhance the conversational analysis of chest X-ray (CXR) images to support radiological reporting.
We observe statistically significant improvement in responses when evaluated for both open and close-ended conversations.
arXiv Detail & Related papers (2024-07-02T18:43:10Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - ChatCAD+: Towards a Universal and Reliable Interactive CAD using LLMs [48.11532667875847]
ChatCAD+ is a tool to generate high-quality medical reports and provide reliable medical advice.
The Reliable Report Generation module is capable of interpreting medical images and generate high-quality medical reports.
The Reliable Interaction module leverages up-to-date information from reputable medical websites to provide reliable medical advice.
arXiv Detail & Related papers (2023-05-25T12:03:31Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.