RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization
- URL: http://arxiv.org/abs/2502.10993v1
- Date: Sun, 16 Feb 2025 04:56:53 GMT
- Title: RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization
- Authors: Tianci Liu, Haoxiang Jiang, Tianze Wang, Ran Xu, Yue Yu, Linjun Zhang, Tuo Zhao, Haoyu Wang,
- Abstract summary: Large language models (LLMs) have achieved impressive performance but face high computational costs and latency.
Retrieval-augmented generation (RAG) helps by integrating external knowledge, but imperfect retrieval can introduce distracting noise that misleads SLMs.
We propose RoseRAG, a robust RAG framework for SLMs via Margin-aware Preference Optimization.
- Score: 53.63439735067081
- License:
- Abstract: Large language models (LLMs) have achieved impressive performance but face high computational costs and latency, limiting their deployment in resource-constrained settings. In contrast, small-scale LLMs (SLMs) are more efficient yet struggle to capture evolving real-world knowledge. Retrieval-augmented generation (RAG) helps by integrating external knowledge, but imperfect retrieval can introduce distracting noise that misleads SLMs. We propose RoseRAG, a robust RAG framework for SLMs via Margin-aware Preference Optimization. RoseRAG employs multi-turn prompting for detailed reasoning, rejection sampling for high-quality explanations, and contrastive preference selection to refine responses by maximizing the likelihood gap between preferred and non-preferred outputs. By integrating these components into a margin-aware optimization process, RoseRAG robustly enhances the accuracy and reliability of SLMs for RAG applications. Extensive experiments on three open-domain question answering benchmarks indicate that our innovative RoseRAG surpasses state-of-the-art baselines significantly.
Related papers
- LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs - No Silver Bullet for LC or RAG Routing [70.35888047551643]
We present LaRA, a novel benchmark specifically designed to rigorously compare RAG and LC LLMs.
LaRA encompasses 2,326 test cases across four practical QA task categories and three types of naturally occurring long texts.
We find that the optimal choice between RAG and LC depends on a complex interplay of factors, including the model's parameter size, long-text capabilities, context length, task type, and the characteristics of the retrieved chunks.
arXiv Detail & Related papers (2025-02-14T08:04:22Z) - Confident or Seek Stronger: Exploring Uncertainty-Based On-device LLM Routing From Benchmarking to Generalization [61.02719787737867]
Large language models (LLMs) are increasingly deployed and democratized on edge devices.
One promising solution is uncertainty-based SLM routing, offloading high-stakes queries to stronger LLMs when resulting in low-confidence responses on SLM.
We conduct a comprehensive investigation into benchmarking and generalization of uncertainty-driven routing strategies from SLMs to LLMs over 1500+ settings.
arXiv Detail & Related papers (2025-02-06T18:59:11Z) - LLMQuoter: Enhancing RAG Capabilities Through Efficient Quote Extraction From Large Contexts [2.685668802278156]
We introduce LLMQuoter, a lightweight, distillation-based model designed to enhance Retrieval Augmented Generation (RAG)
Built on the LLaMA-3B architecture and fine-tuned with Low-Rank Adaptation (LoRA) on a 15,000-sample subset of HotpotQA, LLMQuoter adopts a "quote-first-then-answer" strategy, efficiently identifying key quotes before passing curated snippets to reasoning models.
This workflow reduces cognitive overhead and outperforms full-context approaches like Retrieval-Augmented Fine-Tuning (RAFT), achieving over 20-point accuracy gains across both small and large language
arXiv Detail & Related papers (2025-01-09T20:01:15Z) - Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models [26.353428245346166]
The Extract-Refine-Retrieve-Read (ERRR) framework is designed to bridge the pre-retrieval information gap in Retrieval-Augmented Generation (RAG) systems.
Unlike conventional query optimization techniques used in RAG, the ERRR framework begins by extracting knowledge from Large Language Models (LLMs)
arXiv Detail & Related papers (2024-11-12T14:12:45Z) - RAG-DDR: Optimizing Retrieval-Augmented Generation Using Differentiable Data Rewards [78.74923079748521]
Retrieval-Augmented Generation (RAG) has proven its effectiveness in mitigating hallucinations in Large Language Models (LLMs)
Current approaches use instruction tuning to optimize LLMs, improving their ability to utilize retrieved knowledge.
We propose a Differentiable Data Rewards ( DDR) method, which trains RAG systems by aligning data preferences between different RAG modules.
arXiv Detail & Related papers (2024-10-17T12:53:29Z) - Open-RAG: Enhanced Retrieval-Augmented Reasoning with Open-Source Large Language Models [23.68266151581951]
Retrieval-Augmented Generation (RAG) has been shown to enhance the factual accuracy of Large Language Models (LLMs)
Existing methods often suffer from limited reasoning capabilities in effectively using the retrieved evidence.
We introduce a novel framework, Open-RAG, designed to enhance reasoning capabilities in RAG with open-source LLMs.
arXiv Detail & Related papers (2024-10-02T17:37:18Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG is a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM.
Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts.
It notably enhances accuracy by up to 12.97% while reducing latency by 51% compared to conventional RAG systems on PubHealth.
arXiv Detail & Related papers (2024-07-11T06:50:19Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.
Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.
This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - Improving Retrieval for RAG based Question Answering Models on Financial Documents [0.046603287532620746]
This paper explores the existing constraints of RAG pipelines and introduces methodologies for enhancing text retrieval.
It delves into strategies such as sophisticated chunking techniques, query expansion, the incorporation of metadata annotations, the application of re-ranking algorithms, and the fine-tuning of embedding algorithms.
arXiv Detail & Related papers (2024-03-23T00:49:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.