SafeDialBench: A Fine-Grained Safety Benchmark for Large Language Models in Multi-Turn Dialogues with Diverse Jailbreak Attacks
- URL: http://arxiv.org/abs/2502.11090v2
- Date: Tue, 18 Feb 2025 03:05:15 GMT
- Title: SafeDialBench: A Fine-Grained Safety Benchmark for Large Language Models in Multi-Turn Dialogues with Diverse Jailbreak Attacks
- Authors: Hongye Cao, Yanming Wang, Sijia Jing, Ziyue Peng, Zhixin Bai, Zhe Cao, Meng Fang, Fan Feng, Boyan Wang, Jiaheng Liu, Tianpei Yang, Jing Huo, Yang Gao, Fanyu Meng, Xi Yang, Chao Deng, Junlan Feng,
- Abstract summary: We propose a fine-grained benchmark SafeDialBench for evaluating the safety of Large Language Models (LLMs)
Specifically, we design a two-tier hierarchical safety taxonomy that considers 6 safety dimensions and generates more than 4000 multi-turn dialogues in both Chinese and English under 22 dialogue scenarios.
Notably, we construct an innovative assessment framework of LLMs, measuring capabilities in detecting, and handling unsafe information and maintaining consistency when facing jailbreak attacks.
- Score: 46.25325034315104
- License:
- Abstract: With the rapid advancement of Large Language Models (LLMs), the safety of LLMs has been a critical concern requiring precise assessment. Current benchmarks primarily concentrate on single-turn dialogues or a single jailbreak attack method to assess the safety. Additionally, these benchmarks have not taken into account the LLM's capability of identifying and handling unsafe information in detail. To address these issues, we propose a fine-grained benchmark SafeDialBench for evaluating the safety of LLMs across various jailbreak attacks in multi-turn dialogues. Specifically, we design a two-tier hierarchical safety taxonomy that considers 6 safety dimensions and generates more than 4000 multi-turn dialogues in both Chinese and English under 22 dialogue scenarios. We employ 7 jailbreak attack strategies, such as reference attack and purpose reverse, to enhance the dataset quality for dialogue generation. Notably, we construct an innovative assessment framework of LLMs, measuring capabilities in detecting, and handling unsafe information and maintaining consistency when facing jailbreak attacks. Experimental results across 17 LLMs reveal that Yi-34B-Chat and GLM4-9B-Chat demonstrate superior safety performance, while Llama3.1-8B-Instruct and o3-mini exhibit safety vulnerabilities.
Related papers
- Diversity Helps Jailbreak Large Language Models [16.34618038553998]
We have uncovered a powerful jailbreak technique that leverages large language models' ability to diverge from prior context.
By simply instructing the LLM to deviate and obfuscate previous attacks, our method dramatically outperforms existing approaches.
This revelation exposes a critical flaw in current LLM safety training, suggesting that existing methods may merely mask vulnerabilities rather than eliminate them.
arXiv Detail & Related papers (2024-11-06T19:39:48Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - CoSafe: Evaluating Large Language Model Safety in Multi-Turn Dialogue Coreference [29.55937864144965]
This study is the first to study safety in multi-turn dialogue coreference in large language models (LLMs)
We created a dataset of 1,400 questions across 14 categories, each featuring multi-turn coreference safety attacks.
The highest attack success rate was 56% with the LLaMA2-Chat-7b model, while the lowest was 13.9% with the Mistral-7B-Instruct model.
arXiv Detail & Related papers (2024-06-25T15:13:02Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Bench is a safety benchmark specifically designed for evaluating Large Language Models (LLMs)
It transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.
arXiv Detail & Related papers (2024-02-07T17:33:54Z) - All Languages Matter: On the Multilingual Safety of Large Language Models [96.47607891042523]
We build the first multilingual safety benchmark for large language models (LLMs)
XSafety covers 14 kinds of commonly used safety issues across 10 languages that span several language families.
We propose several simple and effective prompting methods to improve the multilingual safety of ChatGPT.
arXiv Detail & Related papers (2023-10-02T05:23:34Z) - SafetyBench: Evaluating the Safety of Large Language Models [54.878612385780805]
SafetyBench is a comprehensive benchmark for evaluating the safety of Large Language Models (LLMs)
It comprises 11,435 diverse multiple choice questions spanning across 7 distinct categories of safety concerns.
Our tests over 25 popular Chinese and English LLMs in both zero-shot and few-shot settings reveal a substantial performance advantage for GPT-4 over its counterparts.
arXiv Detail & Related papers (2023-09-13T15:56:50Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.