Text-promptable Propagation for Referring Medical Image Sequence Segmentation
- URL: http://arxiv.org/abs/2502.11093v1
- Date: Sun, 16 Feb 2025 12:13:11 GMT
- Title: Text-promptable Propagation for Referring Medical Image Sequence Segmentation
- Authors: Runtian Yuan, Jilan Xu, Mohan Chen, Qingqiu Li, Yuejie Zhang, Rui Feng, Tao Zhang, Shang Gao,
- Abstract summary: Referring Medical Image Sequence aims to segment the referred anatomical entities corresponding to medical text prompts.
TPP supports the segmentation of arbitrary objects of interest based on cross-modal prompt fusion.
We curate a large and comprehensive benchmark covering 4 modalities and 20 different organs and lesions.
- Score: 18.633874947279168
- License:
- Abstract: Medical image sequences, generated by both 2D video-based examinations and 3D imaging techniques, consist of sequential frames or slices that capture the same anatomical entities (e.g., organs or lesions) from multiple perspectives. Existing segmentation studies typically process medical images using either 2D or 3D methods in isolation, often overlooking the inherent consistencies among these images. Additionally, interactive segmentation, while highly beneficial in clinical scenarios, faces the challenge of integrating text prompts effectively across multi-modalities. To address these issues, we introduce an innovative task, Referring Medical Image Sequence Segmentation for the first time, which aims to segment the referred anatomical entities corresponding to medical text prompts. We develop a strong baseline model, Text-Promptable Propagation (TPP), designed to exploit the intrinsic relationships among sequential images and their associated textual descriptions. TPP supports the segmentation of arbitrary objects of interest based on cross-modal prompt fusion. Carefully designed medical prompts are fused and employed as queries to guide image sequence segmentation through triple-propagation. We curate a large and comprehensive benchmark covering 4 modalities and 20 different organs and lesions. Experimental results consistently demonstrate the superior performance of our approach compared to previous methods across these datasets.
Related papers
- Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - SimTxtSeg: Weakly-Supervised Medical Image Segmentation with Simple Text Cues [11.856041847833666]
We present a novel framework, SimTxtSeg, that leverages simple text cues to generate high-quality pseudo-labels.
We evaluate our framework on two medical image segmentation tasks: colonic polyp segmentation and MRI brain tumor segmentation.
arXiv Detail & Related papers (2024-06-27T17:46:13Z) - CAT: Coordinating Anatomical-Textual Prompts for Multi-Organ and Tumor Segmentation [11.087654014615955]
We introduce CAT, an innovative model that Coordinates Anatomical prompts derived from 3D cropped images with Textual prompts enriched by medical domain knowledge.
Trained on a consortium of 10 public CT datasets, CAT demonstrates superior performance in multiple segmentation tasks.
This approach confirms that coordinating multimodal prompts is a promising avenue for addressing complex scenarios in the medical domain.
arXiv Detail & Related papers (2024-06-11T09:22:39Z) - CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios [53.94122089629544]
We introduce CT-GLIP (Grounded Language-Image Pretraining with CT scans), a novel method that constructs organ-level image-text pairs to enhance multimodal contrastive learning.
Our method, trained on a multimodal CT dataset comprising 44,011 organ-level vision-text pairs from 17,702 patients across 104 organs, demonstrates it can identify organs and abnormalities in a zero-shot manner using natural languages.
arXiv Detail & Related papers (2024-04-23T17:59:01Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Unified Medical Image Pre-training in Language-Guided Common Semantic Space [39.61770813855078]
We propose an Unified Medical Image Pre-training framework, namely UniMedI.
UniMedI uses diagnostic reports as common semantic space to create unified representations for diverse modalities of medical images.
We evaluate its performance on both 2D and 3D images across 10 different datasets.
arXiv Detail & Related papers (2023-11-24T22:01:12Z) - Towards Unifying Medical Vision-and-Language Pre-training via Soft
Prompts [63.84720380390935]
There exist two typical types, textiti.e., the fusion-encoder type and the dual-encoder type, depending on whether a heavy fusion module is used.
We propose an effective yet straightforward scheme named PTUnifier to unify the two types.
We first unify the input format by introducing visual and textual prompts, which serve as a feature bank that stores the most representative images/texts.
arXiv Detail & Related papers (2023-02-17T15:43:42Z) - JSSR: A Joint Synthesis, Segmentation, and Registration System for 3D
Multi-Modal Image Alignment of Large-scale Pathological CT Scans [27.180136688977512]
We propose a novel multi-task learning system, JSSR, based on an end-to-end 3D convolutional neural network.
The system is optimized to satisfy the implicit constraints between different tasks in an unsupervised manner.
It consistently outperforms conventional state-of-the-art multi-modal registration methods.
arXiv Detail & Related papers (2020-05-25T16:30:02Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.