Evaluating the Potential of Quantum Machine Learning in Cybersecurity: A Case-Study on PCA-based Intrusion Detection Systems
- URL: http://arxiv.org/abs/2502.11173v1
- Date: Sun, 16 Feb 2025 15:49:25 GMT
- Title: Evaluating the Potential of Quantum Machine Learning in Cybersecurity: A Case-Study on PCA-based Intrusion Detection Systems
- Authors: Armando Bellante, Tommaso Fioravanti, Michele Carminati, Stefano Zanero, Alessandro Luongo,
- Abstract summary: We investigate the potential impact of quantum computing and machine learning (QML) on cybersecurity applications of traditional ML.
First, we explore the potential advantages of quantum computing in machine learning problems specifically related to cybersecurity.
Then, we describe a methodology to quantify the future impact of fault-tolerant QML algorithms on real-world problems.
- Score: 42.184783937646806
- License:
- Abstract: Quantum computing promises to revolutionize our understanding of the limits of computation, and its implications in cryptography have long been evident. Today, cryptographers are actively devising post-quantum solutions to counter the threats posed by quantum-enabled adversaries. Meanwhile, quantum scientists are innovating quantum protocols to empower defenders. However, the broader impact of quantum computing and quantum machine learning (QML) on other cybersecurity domains still needs to be explored. In this work, we investigate the potential impact of QML on cybersecurity applications of traditional ML. First, we explore the potential advantages of quantum computing in machine learning problems specifically related to cybersecurity. Then, we describe a methodology to quantify the future impact of fault-tolerant QML algorithms on real-world problems. As a case study, we apply our approach to standard methods and datasets in network intrusion detection, one of the most studied applications of machine learning in cybersecurity. Our results provide insight into the conditions for obtaining a quantum advantage and the need for future quantum hardware and software advancements.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - QML-IDS: Quantum Machine Learning Intrusion Detection System [1.2016264781280588]
We present QML-IDS, a novel Intrusion Detection System that combines quantum and classical computing techniques.
QML-IDS employs Quantum Machine Learning(QML) methodologies to analyze network patterns and detect attack activities.
We show that QML-IDS is effective at attack detection and performs well in binary and multiclass classification tasks.
arXiv Detail & Related papers (2024-10-07T13:07:41Z) - Assessing the Benefits and Risks of Quantum Computers [0.7224497621488283]
We review what is currently known on the potential uses and risks of quantum computers.
We identify 2 large-scale trends -- new approximate methods and the commercial exploration of business-relevant quantum applications.
We conclude there is a credible expectation that quantum computers will be capable of performing computations which are economically-impactful.
arXiv Detail & Related papers (2024-01-29T17:21:31Z) - Predominant Aspects on Security for Quantum Machine Learning: Literature Review [0.0]
Quantum Machine Learning (QML) has emerged as a promising intersection of quantum computing and classical machine learning.
This paper discusses the question which security concerns and strengths are connected to QML by means of a systematic literature review.
arXiv Detail & Related papers (2024-01-15T15:35:43Z) - Quantum Machine Learning for Remote Sensing: Exploring potential and
challenges [34.74698923766526]
We investigate the application of Quantum Machine Learning (QML) in the field of remote sensing.
It is believed that QML can provide valuable insights for analysis of data from space.
We focus on the problem of kernel value concentration, a phenomenon that adversely affects the runtime of quantum computers.
arXiv Detail & Related papers (2023-11-13T08:38:44Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Security Aspects of Quantum Machine Learning: Opportunities, Threats and
Defenses [5.444459446244819]
Quantum machine learning (QML) can exploit the high dimensional Hilbert space to learn richer representations from limited data.
We explore the possible future applications of QML in the hardware security domain.
We expose the security vulnerabilities of QML and emerging attack models, and corresponding countermeasures.
arXiv Detail & Related papers (2022-04-07T17:44:22Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.