Improving Scientific Document Retrieval with Concept Coverage-based Query Set Generation
- URL: http://arxiv.org/abs/2502.11181v1
- Date: Sun, 16 Feb 2025 15:59:50 GMT
- Title: Improving Scientific Document Retrieval with Concept Coverage-based Query Set Generation
- Authors: SeongKu Kang, Bowen Jin, Wonbin Kweon, Yu Zhang, Dongha Lee, Jiawei Han, Hwanjo Yu,
- Abstract summary: Concept Coverage-based Query set Generation (CCQGen) framework designed to generate a set of queries with comprehensive coverage of the document's concepts.
We identify concepts not sufficiently covered by previous queries, and leverage them as conditions for subsequent query generation.
This approach guides each new query to complement the previous ones, aiding in a thorough understanding of the document.
- Score: 49.29180578078616
- License:
- Abstract: In specialized fields like the scientific domain, constructing large-scale human-annotated datasets poses a significant challenge due to the need for domain expertise. Recent methods have employed large language models to generate synthetic queries, which serve as proxies for actual user queries. However, they lack control over the content generated, often resulting in incomplete coverage of academic concepts in documents. We introduce Concept Coverage-based Query set Generation (CCQGen) framework, designed to generate a set of queries with comprehensive coverage of the document's concepts. A key distinction of CCQGen is that it adaptively adjusts the generation process based on the previously generated queries. We identify concepts not sufficiently covered by previous queries, and leverage them as conditions for subsequent query generation. This approach guides each new query to complement the previous ones, aiding in a thorough understanding of the document. Extensive experiments demonstrate that CCQGen significantly enhances query quality and retrieval performance.
Related papers
- Cognitive-Aligned Document Selection for Retrieval-augmented Generation [2.9060210098040855]
We propose GGatrieval to dynamically update queries and filter high-quality, reliable retrieval documents.
We parse the user query into its syntactic components and perform fine-grained grounded alignment with the retrieved documents.
Our approach introduces a novel criterion for filtering retrieved documents, closely emulating human strategies for acquiring targeted information.
arXiv Detail & Related papers (2025-02-17T13:00:15Z) - ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation [26.4086456393314]
Long-form text generation requires coherent, comprehensive responses that address complex queries with both breadth and depth.
Existing iterative retrieval-augmented generation approaches often struggle to delve deeply into each facet of complex queries.
This paper introduces ConTReGen, a novel framework that employs a context-driven, tree-structured retrieval approach.
arXiv Detail & Related papers (2024-10-20T21:17:05Z) - Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval [49.42043077545341]
We propose a knowledge-aware query expansion framework, augmenting LLMs with structured document relations from knowledge graph (KG)
We leverage document texts as rich KG node representations and use document-based relation filtering for our Knowledge-Aware Retrieval (KAR)
arXiv Detail & Related papers (2024-10-17T17:03:23Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - Generation-Augmented Query Expansion For Code Retrieval [51.20943646688115]
We propose a generation-augmented query expansion framework.
Inspired by the human retrieval process - sketching an answer before searching.
We achieve new state-of-the-art results on the CodeSearchNet benchmark.
arXiv Detail & Related papers (2022-12-20T23:49:37Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
We propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query.
Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
arXiv Detail & Related papers (2022-12-18T15:57:46Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.