Leave No One Behind: Enhancing Diversity While Maintaining Accuracy in Social Recommendation
- URL: http://arxiv.org/abs/2502.11374v2
- Date: Sat, 22 Feb 2025 15:23:07 GMT
- Title: Leave No One Behind: Enhancing Diversity While Maintaining Accuracy in Social Recommendation
- Authors: Lei Li, Xiao Zhou,
- Abstract summary: Social recommendation incorporates social connections into recommender systems.<n>Despite its importance, the impact of social recommendation models on diversity remains largely unexplored.<n>We propose a novel approach that employs relational knowledge distillation to transfer high-diversity structured knowledge from non-social recommendation models to social recommendation models.
- Score: 20.558363246784815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social recommendation, which incorporates social connections into recommender systems, has proven effective in improving recommendation accuracy. However, beyond accuracy, diversity is also crucial for enhancing user engagement. Despite its importance, the impact of social recommendation models on diversity remains largely unexplored. In this study, we systematically examine the dual performance of existing social recommendation algorithms in terms of both accuracy and diversity. Our empirical analysis reveals a concerning trend: while social recommendation models enhance accuracy, they often reduce diversity. To address this issue, we propose Diversified Social Recommendation (DivSR), a novel approach that employs relational knowledge distillation to transfer high-diversity structured knowledge from non-social recommendation models to social recommendation models. DivSR is a lightweight, model-agnostic framework that seamlessly integrates with existing social recommendation architectures. Experiments on three benchmark datasets demonstrate that DivSR significantly enhances diversity while maintaining competitive accuracy, achieving a superior accuracy-diversity trade-off. Our code and data are publicly available at: https://github.com/ll0ruc/DivSR.
Related papers
- Score-based Generative Diffusion Models for Social Recommendations [24.373323217763634]
The effectiveness of social recommendations largely relies on the social homophily assumption.<n>In this paper, we tackle the low social homophily challenge from an innovative generative perspective.
arXiv Detail & Related papers (2024-12-20T05:23:45Z) - Graph Bottlenecked Social Recommendation [47.83350026188183]
We propose a novel Graph Bottlenecked Social Recommendation (GBSR) framework to tackle the social noise issue.
GBSR is a model-agnostic social denoising framework, that aims to maximize the mutual information between the denoised social graph and recommendation labels.
arXiv Detail & Related papers (2024-06-12T13:44:22Z) - DiveR-CT: Diversity-enhanced Red Teaming Large Language Model Assistants with Relaxing Constraints [68.82294911302579]
We introduce DiveR-CT, which relaxes conventional constraints on the objective and semantic reward, granting greater freedom for the policy to enhance diversity.
Our experiments demonstrate DiveR-CT's marked superiority over baselines by 1) generating data that perform better in various diversity metrics across different attack success rate levels, 2) better-enhancing resiliency in blue team models through safety tuning based on collected data, 3) allowing dynamic control of objective weights for reliable and controllable attack success rates, and 4) reducing susceptibility to reward overoptimization.
arXiv Detail & Related papers (2024-05-29T12:12:09Z) - Balancing User Preferences by Social Networks: A Condition-Guided Social Recommendation Model for Mitigating Popularity Bias [64.73474454254105]
Social recommendation models weave social interactions into their design to provide uniquely personalized recommendation results for users.
Existing social recommendation models fail to address the issues of popularity bias and the redundancy of social information.
We propose a Condition-Guided Social Recommendation Model (named CGSoRec) to mitigate the model's popularity bias.
arXiv Detail & Related papers (2024-05-27T02:45:01Z) - Knowledge Graph Context-Enhanced Diversified Recommendation [53.3142545812349]
This research explores the realm of diversified RecSys within the intricate context of knowledge graphs (KG)
Our contributions include introducing an innovative metric, Entity Coverage, and Relation Coverage, which effectively quantifies diversity within the KG domain.
In tandem with this, we introduce a novel technique named Conditional Alignment and Uniformity (CAU) which encodes KG item embeddings while preserving contextual integrity.
arXiv Detail & Related papers (2023-10-20T03:18:57Z) - Disentangled Contrastive Learning for Social Recommendation [28.606016662435117]
Social recommendations utilize social relations to enhance the representation learning for recommendations.
We propose a novel Disentangled contrastive learning framework for social Recommendations DcRec.
arXiv Detail & Related papers (2022-08-18T09:15:18Z) - Diversity Preference-Aware Link Recommendation for Online Social
Networks [0.2580765958706854]
Existing link recommendation methods tend to recommend similar friends to a user but overlook the user's diversity preference.
We propose a new link recommendation problem: the diversity preference-aware link recommendation problem.
We then analyze key properties of the new link recommendation problem and develop a novel link recommendation method to solve the problem.
arXiv Detail & Related papers (2022-05-21T22:59:00Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
We introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the Recommender Systems (RS) setting.
SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations.
Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.
arXiv Detail & Related papers (2021-10-28T13:22:45Z) - Simultaneous Relevance and Diversity: A New Recommendation Inference
Approach [81.44167398308979]
We propose a new approach, which extends the general collaborative filtering (CF) by introducing a new way of CF inference, negative-to-positive.
Our approach is applicable to a wide range of recommendation scenarios/use-cases at various sophistication levels.
Our analysis and experiments on public datasets and real-world production data show that our approach outperforms existing methods on relevance and diversity simultaneously.
arXiv Detail & Related papers (2020-09-27T22:20:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.