Do we Really Need Visual Instructions? Towards Visual Instruction-Free Fine-tuning for Large Vision-Language Models
- URL: http://arxiv.org/abs/2502.11427v1
- Date: Mon, 17 Feb 2025 04:38:12 GMT
- Title: Do we Really Need Visual Instructions? Towards Visual Instruction-Free Fine-tuning for Large Vision-Language Models
- Authors: Zikang Liu, Kun Zhou, Wayne Xin Zhao, Dawei Gao, Yaliang Li, Ji-Rong Wen,
- Abstract summary: We propose ViFT, a visual instruction-free fine-tuning framework for LVLMs.
We only require the text-only instructions and image caption data during training, to separately learn the task-solving and visual perception abilities.
Experimental results demonstrate that ViFT can achieve state-of-the-art performance on several visual reasoning and visual instruction following benchmarks.
- Score: 127.38740043393527
- License:
- Abstract: Visual instruction tuning has become the predominant technology in eliciting the multimodal task-solving capabilities of large vision-language models (LVLMs). Despite the success, as visual instructions require images as the input, it would leave the gap in inheriting the task-solving capabilities from the backbone LLMs, and make it costly to collect a large-scale dataset. To address it, we propose ViFT, a visual instruction-free fine-tuning framework for LVLMs. In ViFT, we only require the text-only instructions and image caption data during training, to separately learn the task-solving and visual perception abilities. During inference, we extract and combine the representations of the text and image inputs, for fusing the two abilities to fulfill multimodal tasks. Experimental results demonstrate that ViFT can achieve state-of-the-art performance on several visual reasoning and visual instruction following benchmarks, with rather less training data. Our code and data will be publicly released.
Related papers
- Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images [7.823336661261962]
Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors.
We propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details.
arXiv Detail & Related papers (2025-02-19T18:05:42Z) - FiVL: A Framework for Improved Vision-Language Alignment [10.184567639685321]
We introduce FiVL, a novel method for constructing datasets designed to train LVLMs for enhanced visual grounding.
These datasets can be utilized for both training and assessing an LVLM's ability to use image content as substantive evidence.
To demonstrate the utility of our dataset, we introduce an innovative training task that outperforms baselines alongside a validation method and application for explainability.
arXiv Detail & Related papers (2024-12-19T09:24:10Z) - Instruction Tuning-free Visual Token Complement for Multimodal LLMs [51.138806401996696]
multimodal large language models (MLLMs) have promised an elegant bridge between vision and language.
We propose a Visual Token Complement framework (VTC) that helps MLLMs regain the missing visual features.
Our VTC integrates text-to-image generation as a guide to identifying the text-irrelevant features, and a visual selector is then developed to generate complementary visual tokens.
arXiv Detail & Related papers (2024-08-09T12:13:01Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
We propose a contrastive learning framework, termed Document Object COntrastive learning (DoCo)
DoCo leverages an auxiliary multimodal encoder to obtain the features of document objects and align them to the visual features generated by the vision encoder of Large Visual-Language Models (LVLMs)
We demonstrate that the proposed DoCo serves as a plug-and-play pre-training method, which can be employed in the pre-training of various LVLMs without inducing any increase in computational complexity during the inference process.
arXiv Detail & Related papers (2024-02-29T10:17:27Z) - VILA: On Pre-training for Visual Language Models [74.08039416548209]
We study the design options for VLM pre-training through step-by-step controllable comparisons.
We build VILA, a Visual Language model family that consistently outperforms the state-of-the-art models.
arXiv Detail & Related papers (2023-12-12T18:58:18Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.