Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval
- URL: http://arxiv.org/abs/2502.11431v1
- Date: Mon, 17 Feb 2025 04:40:15 GMT
- Title: Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval
- Authors: Ze Liu, Zhengyang Liang, Junjie Zhou, Zheng Liu, Defu Lian,
- Abstract summary: We define an emerging IR paradigm called textitVisualized Information Retrieval, or textbfVis-IR, where multimodal information is jointly represented by a unified visual format.<n>We make three key contributions for Vis-IR. First, we create textbfVIRA (Vis-IR Aggregation), a large-scale dataset comprising a vast collection of screenshots from diverse sources.<n>Second, we develop textbfUniSE (Universal Screenshot Embeddings), a family of retrieval models that enable screenshots to query or be queried across
- Score: 33.6584861832657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the popularity of multimodal techniques, it receives growing interests to acquire useful information in visual forms. In this work, we formally define an emerging IR paradigm called \textit{Visualized Information Retrieval}, or \textbf{Vis-IR}, where multimodal information, such as texts, images, tables and charts, is jointly represented by a unified visual format called \textbf{Screenshots}, for various retrieval applications. We further make three key contributions for Vis-IR. First, we create \textbf{VIRA} (Vis-IR Aggregation), a large-scale dataset comprising a vast collection of screenshots from diverse sources, carefully curated into captioned and question-answer formats. Second, we develop \textbf{UniSE} (Universal Screenshot Embeddings), a family of retrieval models that enable screenshots to query or be queried across arbitrary data modalities. Finally, we construct \textbf{MVRB} (Massive Visualized IR Benchmark), a comprehensive benchmark covering a variety of task forms and application scenarios. Through extensive evaluations on MVRB, we highlight the deficiency from existing multimodal retrievers and the substantial improvements made by UniSE. Our work will be shared with the community, laying a solid foundation for this emerging field.
Related papers
- VRD-IU: Lessons from Visually Rich Document Intelligence and Understanding [11.588271855615556]
Visually Rich Document Understanding (VRDU) has emerged as a critical field in document intelligence.<n>Form-like documents pose unique challenges due to their complex layouts, multi-stakeholder involvement, and high structural variability.<n>The VRD-IU Competition was introduced, focusing on extracting and localizing key information from multi-format forms.
arXiv Detail & Related papers (2025-06-02T07:28:28Z) - ABC: Achieving Better Control of Multimodal Embeddings using VLMs [61.396457715710774]
Visual embedding models excel at zero-shot tasks like visual retrieval and classification.
Existing CLIP-based approaches embed images and text independently, and fuse the result.
We introduce ABC, an open-source multimodal embedding model that uses a vision-language model backbone.
arXiv Detail & Related papers (2025-03-01T03:29:02Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
We introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences.
We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries.
We propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity.
arXiv Detail & Related papers (2025-02-18T12:00:47Z) - UniIR: Training and Benchmarking Universal Multimodal Information
Retrievers [76.06249845401975]
We introduce UniIR, a unified instruction-guided multimodal retriever capable of handling eight distinct retrieval tasks across modalities.
UniIR, a single retrieval system jointly trained on ten diverse multimodal-IR datasets, interprets user instructions to execute various retrieval tasks.
We construct the M-BEIR, a multimodal retrieval benchmark with comprehensive results, to standardize the evaluation of universal multimodal information retrieval.
arXiv Detail & Related papers (2023-11-28T18:55:52Z) - ViCLEVR: A Visual Reasoning Dataset and Hybrid Multimodal Fusion Model
for Visual Question Answering in Vietnamese [1.6340299456362617]
We introduce the ViCLEVR dataset, a pioneering collection for evaluating various visual reasoning capabilities in Vietnamese.
We conduct a comprehensive analysis of contemporary visual reasoning systems, offering valuable insights into their strengths and limitations.
We present PhoVIT, a comprehensive multimodal fusion that identifies objects in images based on questions.
arXiv Detail & Related papers (2023-10-27T10:44:50Z) - Learning Comprehensive Representations with Richer Self for
Text-to-Image Person Re-Identification [34.289949134802086]
Text-to-image person re-identification (TIReID) retrieves pedestrian images of the same identity based on a query text.
Existing methods for TIReID typically treat it as a one-to-one image-text matching problem, only focusing on the relationship between image-text pairs within a view.
We propose a framework, called LCR$2$S, for modeling many-to-many correspondences of the same identity by learning representations for both modalities from a novel perspective.
arXiv Detail & Related papers (2023-10-17T12:39:16Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries.
We introduce a retriever model ReViz'' that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion.
We demonstrate superior performance in retrieval on two datasets under zero-shot settings.
arXiv Detail & Related papers (2023-06-01T08:04:12Z) - EDIS: Entity-Driven Image Search over Multimodal Web Content [95.40238328527931]
We introduce textbfEntity-textbfDriven textbfImage textbfSearch (EDIS), a dataset for cross-modal image search in the news domain.
EDIS consists of 1 million web images from actual search engine results and curated datasets, with each image paired with a textual description.
arXiv Detail & Related papers (2023-05-23T02:59:19Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
Existing research on multimodal relation extraction (MRE) faces two co-existing challenges, internal-information over-utilization and external-information under-exploitation.
We propose a novel framework that simultaneously implements the idea of internal-information screening and external-information exploiting.
arXiv Detail & Related papers (2023-05-19T14:56:57Z) - Visual Information Extraction in the Wild: Practical Dataset and
End-to-end Solution [48.693941280097974]
We propose a large-scale dataset consisting of camera images for visual information extraction (VIE)
We propose a novel framework for end-to-end VIE that combines the stages of OCR and information extraction in an end-to-end learning fashion.
We evaluate the existing end-to-end methods for VIE on the proposed dataset and observe that the performance of these methods has a distinguishable drop from SROIE to our proposed dataset due to the larger variance of layout and entities.
arXiv Detail & Related papers (2023-05-12T14:11:47Z) - HGAN: Hierarchical Graph Alignment Network for Image-Text Retrieval [13.061063817876336]
We propose a novel Hierarchical Graph Alignment Network (HGAN) for image-text retrieval.
First, to capture the comprehensive multimodal features, we construct the feature graphs for the image and text modality respectively.
Then, a multi-granularity shared space is established with a designed Multi-granularity Feature Aggregation and Rearrangement (MFAR) module.
Finally, the ultimate image and text features are further refined through three-level similarity functions to achieve the hierarchical alignment.
arXiv Detail & Related papers (2022-12-16T05:08:52Z) - Named Entity and Relation Extraction with Multi-Modal Retrieval [51.660650522630526]
Multi-modal named entity recognition (NER) and relation extraction (RE) aim to leverage relevant image information to improve the performance of NER and RE.
We propose a novel Multi-modal Retrieval based framework (MoRe)
MoRe contains a text retrieval module and an image-based retrieval module, which retrieve related knowledge of the input text and image in the knowledge corpus respectively.
arXiv Detail & Related papers (2022-12-03T13:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.