Learning Dexterous Bimanual Catch Skills through Adversarial-Cooperative Heterogeneous-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2502.11437v1
- Date: Mon, 17 Feb 2025 04:50:45 GMT
- Title: Learning Dexterous Bimanual Catch Skills through Adversarial-Cooperative Heterogeneous-Agent Reinforcement Learning
- Authors: Taewoo Kim, Youngwoo Yoon, Jaehong Kim,
- Abstract summary: We propose a novel framework for learning dexterous bimanual catching skills using Heterogeneous-Agent Reinforcement Learning (HARL)
Our approach introduces an adversarial reward scheme, where a throw agent increases the difficulty of throws-adjusting speed-while a catch agent learns to coordinate both hands to catch objects.
We evaluate the framework in simulated environments using 15 different objects, demonstrating robustness and versatility in handling diverse objects.
- Score: 2.12918068324152
- License:
- Abstract: Robotic catching has traditionally focused on single-handed systems, which are limited in their ability to handle larger or more complex objects. In contrast, bimanual catching offers significant potential for improved dexterity and object handling but introduces new challenges in coordination and control. In this paper, we propose a novel framework for learning dexterous bimanual catching skills using Heterogeneous-Agent Reinforcement Learning (HARL). Our approach introduces an adversarial reward scheme, where a throw agent increases the difficulty of throws-adjusting speed-while a catch agent learns to coordinate both hands to catch objects under these evolving conditions. We evaluate the framework in simulated environments using 15 different objects, demonstrating robustness and versatility in handling diverse objects. Our method achieved approximately a 2x increase in catching reward compared to single-agent baselines across 15 diverse objects.
Related papers
- DexterityGen: Foundation Controller for Unprecedented Dexterity [67.15251368211361]
Teaching robots dexterous manipulation skills, such as tool use, presents a significant challenge.
Current approaches can be broadly categorized into two strategies: human teleoperation (for imitation learning) and sim-to-real reinforcement learning.
We introduce DexterityGen, which uses RL to pretrain large-scale dexterous motion primitives, such as in-hand rotation or translation.
In the real world, we use human teleoperation as a prompt to the controller to produce highly dexterous behavior.
arXiv Detail & Related papers (2025-02-06T18:49:35Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
We create high-quality adversarial examples by incorporating multi-granular perturbations.
We transform the multi-granular attack into a sequential decision-making process.
Our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.
arXiv Detail & Related papers (2024-04-02T02:08:29Z) - Twisting Lids Off with Two Hands [82.21668778600414]
We show how policies trained in simulation can be effectively and efficiently transferred to the real world.
Specifically, we consider the problem of twisting lids of various bottle-like objects with two hands.
This is the first sim-to-real RL system that enables such capabilities on bimanual multi-fingered hands.
arXiv Detail & Related papers (2024-03-04T18:59:30Z) - SLIM: Skill Learning with Multiple Critics [8.645929825516818]
Self-supervised skill learning aims to acquire useful behaviors that leverage the underlying dynamics of the environment.
Latent variable models, based on mutual information, have been successful in this task but still struggle in the context of robotic manipulation.
We introduce SLIM, a multi-critic learning approach for skill discovery with a particular focus on robotic manipulation.
arXiv Detail & Related papers (2024-02-01T18:07:33Z) - Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
We present a modular framework designed to enable a robot hand-arm system to learn how to catch flying objects.
Our framework consists of five core modules: (i) an object state estimator that learns object trajectory prediction, (ii) a catching pose quality network that learns to score and rank object poses for catching, (iii) a reaching control policy trained to move the robot hand to pre-catch poses, and (iv) a grasping control policy trained to perform soft catching motions.
We conduct extensive evaluations of our framework in simulation for each module and the integrated system, to demonstrate high success rates of in-flight
arXiv Detail & Related papers (2023-12-21T16:20:12Z) - Decentralized Adversarial Training over Graphs [55.28669771020857]
The vulnerability of machine learning models to adversarial attacks has been attracting considerable attention in recent years.
This work studies adversarial training over graphs, where individual agents are subjected to varied strength perturbation space.
arXiv Detail & Related papers (2023-03-23T15:05:16Z) - Learning Transferable Adversarial Robust Representations via Multi-view
Consistency [57.73073964318167]
We propose a novel meta-adversarial multi-view representation learning framework with dual encoders.
We demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains.
arXiv Detail & Related papers (2022-10-19T11:48:01Z) - Scalable Task-Driven Robotic Swarm Control via Collision Avoidance and
Learning Mean-Field Control [23.494528616672024]
We use state-of-the-art mean-field control techniques to convert many-agent swarm control into classical single-agent control of distributions.
Here, we combine collision avoidance and learning of mean-field control into a unified framework for tractably designing intelligent robotic swarm behavior.
arXiv Detail & Related papers (2022-09-15T16:15:04Z) - Skill Discovery of Coordination in Multi-agent Reinforcement Learning [41.67943127631515]
We propose "Multi-agent Skill Discovery"(MASD), a method for discovering skills for coordination patterns of multiple agents.
We show the emergence of various skills on the level of coordination in a general particle multi-agent environment.
We also reveal that the "bottleneck" prevents skills from collapsing to a single agent and enhances the diversity of learned skills.
arXiv Detail & Related papers (2020-06-07T02:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.