Learning Surrogate Potential Mean Field Games via Gaussian Processes: A Data-Driven Approach to Ill-Posed Inverse Problems
- URL: http://arxiv.org/abs/2502.11506v1
- Date: Mon, 17 Feb 2025 07:14:30 GMT
- Title: Learning Surrogate Potential Mean Field Games via Gaussian Processes: A Data-Driven Approach to Ill-Posed Inverse Problems
- Authors: Jingguo Zhang, Xianjin Yang, Chenchen Mou, Chao Zhou,
- Abstract summary: Mean field games (MFGs) describe the collective behavior of interacting agents.
We tackle ill-posed inverse problems in potential MFGs, aiming to recover the agents' population, momentum, and environmental setup.
- Score: 1.4325734372991794
- License:
- Abstract: Mean field games (MFGs) describe the collective behavior of large populations of interacting agents. In this work, we tackle ill-posed inverse problems in potential MFGs, aiming to recover the agents' population, momentum, and environmental setup from limited, noisy measurements and partial observations. These problems are ill-posed because multiple MFG configurations can explain the same data, or different parameters can yield nearly identical observations. Nonetheless, they remain crucial in practice for real-world scenarios where data are inherently sparse or noisy, or where the MFG structure is not fully determined. Our focus is on finding surrogate MFGs that accurately reproduce the observed data despite these challenges. We propose two Gaussian process (GP)-based frameworks: an inf-sup formulation and a bilevel approach. The choice between them depends on whether the unknown parameters introduce concavity in the objective. In the inf-sup framework, we use the linearity of GPs and their parameterization structure to maintain convex-concave properties, allowing us to apply standard convex optimization algorithms. In the bilevel framework, we employ a gradient-descent-based algorithm and introduce two methods for computing the outer gradient. The first method leverages an existing solver for the inner potential MFG and applies automatic differentiation, while the second adopts an adjoint-based strategy that computes the outer gradient independently of the inner solver. Our numerical experiments show that when sufficient prior information is available, the unknown parameters can be accurately recovered. Otherwise, if prior information is limited, the inverse problem is ill-posed, but our frameworks can still produce surrogate MFG models that closely match observed data.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Rethinking the Diffusion Models for Numerical Tabular Data Imputation from the Perspective of Wasserstein Gradient Flow [13.109101873881063]
We introduce a principled approach termed Kernelized Negative Entropy-regularized Wasserstein gradient flow Imputation (KnewImp)
Our proposed KnewImp approach significantly outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2024-06-22T06:59:32Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.
This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Gleo-Det: Deep Convolution Feature-Guided Detector with Local Entropy
Optimization for Salient Points [5.955667705173262]
We propose to achieve fine constraint based on the requirement of repeatability while coarse constraint with guidance of deep convolution features.
With the guidance of convolution features, we define the cost function from both positive and negative sides.
arXiv Detail & Related papers (2022-04-27T12:40:21Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Learning Functional Priors and Posteriors from Data and Physics [3.537267195871802]
We develop a new framework based on deep neural networks to be able to extrapolate in space-time using historical data.
We employ the physics-informed Generative Adversarial Networks (PI-GAN) to learn a functional prior.
At the second stage, we employ the Hamiltonian Monte Carlo (HMC) method to estimate the posterior in the latent space of PI-GANs.
arXiv Detail & Related papers (2021-06-08T03:03:24Z) - Self-Concordant Analysis of Generalized Linear Bandits with Forgetting [2.282313031205821]
We focus on self-concordant GLB (which include logistic regression) with achieved by the use of a Poisson window or exponential weights.
We propose a novel approach to address the potential approach to address the proposed approach to address the Generalized Bandits (GLB) problem.
arXiv Detail & Related papers (2020-11-02T08:36:39Z) - Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field
Control/Game in Continuous Time [109.06623773924737]
We study the policy gradient method for the linear-quadratic mean-field control and game.
We show that it converges to the optimal solution at a linear rate, which is verified by a synthetic simulation.
arXiv Detail & Related papers (2020-08-16T06:34:11Z) - Exponentially Weighted l_2 Regularization Strategy in Constructing
Reinforced Second-order Fuzzy Rule-based Model [72.57056258027336]
In the conventional Takagi-Sugeno-Kang (TSK)-type fuzzy models, constant or linear functions are usually utilized as the consequent parts of the fuzzy rules.
We introduce an exponential weight approach inspired by the weight function theory encountered in harmonic analysis.
arXiv Detail & Related papers (2020-07-02T15:42:15Z) - Unified Reinforcement Q-Learning for Mean Field Game and Control
Problems [0.0]
We present a Reinforcement Learning (RL) algorithm to solve infinite horizon Mean Field Game (MFG) and Mean Field Control (MFC) problems.
Our approach can be described as a unified two-timescale Mean Field Q-learning: The emphsame algorithm can learn either the MFG or the MFC solution by simply tuning the ratio of two learning parameters.
arXiv Detail & Related papers (2020-06-24T17:45:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.