DifCluE: Generating Counterfactual Explanations with Diffusion Autoencoders and modal clustering
- URL: http://arxiv.org/abs/2502.11509v1
- Date: Mon, 17 Feb 2025 07:17:37 GMT
- Title: DifCluE: Generating Counterfactual Explanations with Diffusion Autoencoders and modal clustering
- Authors: Suparshva Jain, Amit Sangroya, Lovekesh Vig,
- Abstract summary: We harness the power of a Diffusion Autoencoder to generate multiple distinct counterfactual explanations.
By clustering in the latent space, we uncover the directions corresponding to the different modes within a class.
We introduce a novel methodology, DifCluE, which consistently identifies these modes and produces more reliable counterfactual explanations.
- Score: 11.161081261781659
- License:
- Abstract: Generating multiple counterfactual explanations for different modes within a class presents a significant challenge, as these modes are distinct yet converge under the same classification. Diffusion probabilistic models (DPMs) have demonstrated a strong ability to capture the underlying modes of data distributions. In this paper, we harness the power of a Diffusion Autoencoder to generate multiple distinct counterfactual explanations. By clustering in the latent space, we uncover the directions corresponding to the different modes within a class, enabling the generation of diverse and meaningful counterfactuals. We introduce a novel methodology, DifCluE, which consistently identifies these modes and produces more reliable counterfactual explanations. Our experimental results demonstrate that DifCluE outperforms the current state-of-the-art in generating multiple counterfactual explanations, offering a significant advance- ment in model interpretability.
Related papers
- Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainer is a novel framework that, leveraging language-vision models, enables multimodal global explainability.
It employs diffusion models conditioned on optimized text prompts, synthesizing images that maximize class outputs.
The analysis of generated visual descriptions allows for automatic identification of biases and spurious features.
arXiv Detail & Related papers (2024-04-03T10:11:22Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Navigating the Structured What-If Spaces: Counterfactual Generation via
Structured Diffusion [20.20945739504847]
We introduce Structured Counterfactual diffuser or SCD, the first plug-and-play framework leveraging diffusion for generating counterfactual explanations in structured data.
Our experiments show that our counterfactuals not only exhibit high plausibility compared to the existing state-of-the-art but also show significantly better proximity and diversity.
arXiv Detail & Related papers (2023-12-21T07:05:21Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
We propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs)
We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
arXiv Detail & Related papers (2023-10-03T17:37:52Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Are Data-driven Explanations Robust against Out-of-distribution Data? [18.760475318852375]
We propose an end-to-end model-agnostic learning framework Distributionally Robust Explanations (DRE)
Key idea is to fully utilize the inter-distribution information to provide supervisory signals for the learning of explanations without human annotation.
Our results demonstrate that the proposed method significantly improves the model's performance in terms of explanation and prediction robustness against distributional shifts.
arXiv Detail & Related papers (2023-03-29T02:02:08Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
diffusion models have quickly become the prevailing approach to generative modeling in many domains.
We propose an energy-based parameterization of diffusion models which enables the use of new compositional operators.
We find these samplers lead to notable improvements in compositional generation across a wide set of problems.
arXiv Detail & Related papers (2023-02-22T18:48:46Z) - Contrastively Disentangled Sequential Variational Autoencoder [20.75922928324671]
We propose a novel sequence representation learning method, named Contrastively Disentangled Sequential Variational Autoencoder (C-DSVAE)
We use a novel evidence lower bound which maximizes the mutual information between the input and the latent factors, while penalizes the mutual information between the static and dynamic factors.
Our experiments show that C-DSVAE significantly outperforms the previous state-of-the-art methods on multiple metrics.
arXiv Detail & Related papers (2021-10-22T23:00:32Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.