Towards Reasoning Ability of Small Language Models
- URL: http://arxiv.org/abs/2502.11569v1
- Date: Mon, 17 Feb 2025 08:59:16 GMT
- Title: Towards Reasoning Ability of Small Language Models
- Authors: Gaurav Srivastava, Shuxiang Cao, Xuan Wang,
- Abstract summary: We show that small language models (SLMs) can achieve competitive reasoning performance.<n>We systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks.<n>Our findings challenge the assumption that scaling is the only way to achieve strong reasoning.
- Score: 3.732224317444325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale ($\sim$100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
Related papers
- Generative Evaluation of Complex Reasoning in Large Language Models [39.195491367590485]
We introduce KUMO, a generative evaluation framework designed specifically for assessing reasoning in large language models (LLMs)
Through an automated pipeline, KUMO continuously generates novel tasks across open-ended domains, compelling models to demonstrate genuine generalization rather than superhuman memorization.
We evaluate 23 state-of-the-art LLMs on 5,000 tasks across 100 domains created by KUMO, benchmarking their reasoning abilities against university students.
arXiv Detail & Related papers (2025-04-03T17:54:18Z) - Weaker LLMs' Opinions Also Matter: Mixture of Opinions Enhances LLM's Mathematical Reasoning [3.0449420665138485]
Large Language Models (LLMs) have raised interest in their formal reasoning capabilities, particularly in mathematics.
We propose a post-training approach leveraging a mixture of opinions (MoO) from weaker ancillary LLMs to enhance a (relatively) stronger LLM's reasoning.
Our results show that incorporating weaker LLMs' opinions improves mathematical reasoning by an average of 5%, highlighting the value of diverse perspectives in reasoning tasks.
arXiv Detail & Related papers (2025-02-26T23:22:02Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - What Makes In-context Learning Effective for Mathematical Reasoning: A Theoretical Analysis [81.15503859645149]
In this paper, we aim to theoretically analyze the impact of in-context demonstrations on large language models' reasoning performance.<n>We propose a straightforward, generalizable, and low-complexity demonstration selection method named LMS3.
arXiv Detail & Related papers (2024-12-11T11:38:11Z) - Are Large Language Models Good Statisticians? [10.42853117200315]
StatQA is a new benchmark designed for statistical analysis tasks.
We show that even state-of-the-art models such as GPT-4o achieve a best performance of only 64.83%.
While open-source LLMs show limited capability, those fine-tuned ones exhibit marked improvements.
arXiv Detail & Related papers (2024-06-12T02:23:51Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.<n>The question of how reliable these evaluators are has emerged as a crucial research question.<n>We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) are used to automate decision-making tasks.<n>In this paper, we evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.<n>We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types.<n>These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs.
We propose a novel framework that can automatically evaluate LLMs through a peer-review process.
arXiv Detail & Related papers (2024-01-28T12:33:14Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - Clever Hans or Neural Theory of Mind? Stress Testing Social Reasoning in
Large Language Models [82.50173296858377]
Many anecdotal examples were used to suggest newer large language models (LLMs) like ChatGPT and GPT-4 exhibit Neural Theory-of-Mind (N-ToM)
We investigate the extent of LLMs' N-ToM through an extensive evaluation on 6 tasks and find that while LLMs exhibit certain N-ToM abilities, this behavior is far from being robust.
arXiv Detail & Related papers (2023-05-24T06:14:31Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
Large language models (LLMs) have shown promise for automatic summarization but the reasons behind their successes are poorly understood.
We find instruction tuning, and not model size, is the key to the LLM's zero-shot summarization capability.
arXiv Detail & Related papers (2023-01-31T18:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.