AAKT: Enhancing Knowledge Tracing with Alternate Autoregressive Modeling
- URL: http://arxiv.org/abs/2502.11817v1
- Date: Mon, 17 Feb 2025 14:09:51 GMT
- Title: AAKT: Enhancing Knowledge Tracing with Alternate Autoregressive Modeling
- Authors: Hao Zhou, Wenge Rong, Jianfei Zhang, Qing Sun, Yuanxin Ouyang, Zhang Xiong,
- Abstract summary: Knowledge Tracing aims to predict students' future performances based on their former exercises and additional information in educational settings.
One of the primary challenges in autoregressive modeling for Knowledge Tracing is effectively representing the anterior (pre-response) and posterior (post-response) states of learners across exercises.
We propose a novel perspective on knowledge tracing task by treating it as a generative process, consistent with the principles of autoregressive models.
- Score: 23.247238358162157
- License:
- Abstract: Knowledge Tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive modeling on the sequence of former exercises has been proven effective for this task. One of the primary challenges in autoregressive modeling for Knowledge Tracing is effectively representing the anterior (pre-response) and posterior (post-response) states of learners across exercises. Existing methods often employ complex model architectures to update learner states using question and response records. In this study, we propose a novel perspective on knowledge tracing task by treating it as a generative process, consistent with the principles of autoregressive models. We demonstrate that knowledge states can be directly represented through autoregressive encodings on a question-response alternate sequence, where model generate the most probable representation in hidden state space by analyzing history interactions. This approach underpins our framework, termed Alternate Autoregressive Knowledge Tracing (AAKT). Additionally, we incorporate supplementary educational information, such as question-related skills, into our framework through an auxiliary task, and include extra exercise details, like response time, as additional inputs. Our proposed framework is implemented using advanced autoregressive technologies from Natural Language Generation (NLG) for both training and prediction. Empirical evaluations on four real-world KT datasets indicate that AAKT consistently outperforms all baseline models in terms of AUC, ACC, and RMSE. Furthermore, extensive ablation studies and visualized analysis validate the effectiveness of key components in AAKT.
Related papers
- Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - An Empirical Comparison of Deep Learning Models for Knowledge Tracing on
Large-Scale Dataset [10.329254031835953]
Knowledge tracing is a problem of modeling each student's mastery of knowledge concepts.
Recent release of large-scale student performance dataset citechoi 2019ednet motivates the analysis of performance of deep learning approaches.
arXiv Detail & Related papers (2021-01-16T04:58:17Z) - Deep Knowledge Tracing with Learning Curves [0.9088303226909278]
We propose a Convolution-Augmented Knowledge Tracing (CAKT) model in this paper.
The model employs three-dimensional convolutional neural networks to explicitly learn a student's recent experience on applying the same knowledge concept with that in the next question.
CAKT achieves the new state-of-the-art performance in predicting students' responses compared with existing models.
arXiv Detail & Related papers (2020-07-26T15:24:51Z) - Context-Aware Attentive Knowledge Tracing [21.397976659857793]
We propose attentive knowledge tracing, which couples flexible attention-based neural network models with a series of novel, interpretable model components.
AKT uses a novel monotonic attention mechanism that relates a learner's future responses to assessment questions to their past responses.
We show that AKT outperforms existing KT methods (by up to $6%$ in AUC in some cases) on predicting future learner responses.
arXiv Detail & Related papers (2020-07-24T02:45:43Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - Dynamic Knowledge embedding and tracing [18.717482292051788]
We propose a novel approach to knowledge tracing that combines techniques from matrix factorization with recent progress in recurrent neural networks (RNNs)
The proposed emphDynEmb framework enables the tracking of student knowledge even without the concept/skill tag information.
arXiv Detail & Related papers (2020-05-18T21:56:42Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.