Intuitive physics understanding emerges from self-supervised pretraining on natural videos
- URL: http://arxiv.org/abs/2502.11831v1
- Date: Mon, 17 Feb 2025 14:27:14 GMT
- Title: Intuitive physics understanding emerges from self-supervised pretraining on natural videos
- Authors: Quentin Garrido, Nicolas Ballas, Mahmoud Assran, Adrien Bardes, Laurent Najman, Michael Rabbat, Emmanuel Dupoux, Yann LeCun,
- Abstract summary: We investigate the emergence of intuitive physics understanding in deep neural network models trained to predict masked regions in natural videos.
We find that video prediction models trained to predict outcomes in a learned representation space demonstrate an understanding of various intuitive physics properties.
- Score: 39.030105916720835
- License:
- Abstract: We investigate the emergence of intuitive physics understanding in general-purpose deep neural network models trained to predict masked regions in natural videos. Leveraging the violation-of-expectation framework, we find that video prediction models trained to predict outcomes in a learned representation space demonstrate an understanding of various intuitive physics properties, such as object permanence and shape consistency. In contrast, video prediction in pixel space and multimodal large language models, which reason through text, achieve performance closer to chance. Our comparisons of these architectures reveal that jointly learning an abstract representation space while predicting missing parts of sensory input, akin to predictive coding, is sufficient to acquire an understanding of intuitive physics, and that even models trained on one week of unique video achieve above chance performance. This challenges the idea that core knowledge -- a set of innate systems to help understand the world -- needs to be hardwired to develop an understanding of intuitive physics.
Related papers
- Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
We introduce latent intuitive physics, a transfer learning framework for physics simulation.
It can infer hidden properties of fluids from a single 3D video and simulate the observed fluid in novel scenes.
We validate our model in three ways: (i) novel scene simulation with the learned visual-world physics, (ii) future prediction of the observed fluid dynamics, and (iii) supervised particle simulation.
arXiv Detail & Related papers (2024-06-18T16:37:44Z) - X-VoE: Measuring eXplanatory Violation of Expectation in Physical Events [75.94926117990435]
This study introduces X-VoE, a benchmark dataset to assess AI agents' grasp of intuitive physics.
X-VoE establishes a higher bar for the explanatory capacities of intuitive physics models.
We present an explanation-based learning system that captures physics dynamics and infers occluded object states.
arXiv Detail & Related papers (2023-08-21T03:28:23Z) - Dynamic Visual Reasoning by Learning Differentiable Physics Models from
Video and Language [92.7638697243969]
We propose a unified framework that can jointly learn visual concepts and infer physics models of objects from videos and language.
This is achieved by seamlessly integrating three components: a visual perception module, a concept learner, and a differentiable physics engine.
arXiv Detail & Related papers (2021-10-28T17:59:13Z) - Learning to Identify Physical Parameters from Video Using Differentiable
Physics [2.15242029196761]
We propose a differentiable physics engine within an action-conditional video representation network to learn a physical latent representation.
We demonstrate that our network can learn to encode images and identify physical properties like mass and friction from videos and action sequences.
arXiv Detail & Related papers (2020-09-17T13:36:57Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
Humans intuitively recognize objects' physical properties and predict their motion, even when the objects are engaged in complicated interactions.
We present a neural model that simultaneously reasons about physics and makes future predictions based on visual and dynamics priors.
Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.
arXiv Detail & Related papers (2020-04-28T17:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.