ChordFormer: A Conformer-Based Architecture for Large-Vocabulary Audio Chord Recognition
- URL: http://arxiv.org/abs/2502.11840v1
- Date: Mon, 17 Feb 2025 14:35:16 GMT
- Title: ChordFormer: A Conformer-Based Architecture for Large-Vocabulary Audio Chord Recognition
- Authors: Muhammad Waseem Akram, Stefano Dettori, Valentina Colla, Giorgio Carlo Buttazzo,
- Abstract summary: Chord recognition serves as a critical task in music information retrieval due to the descriptive nature of chords in music analysis.
This work proposes ChordFormer, a novel conformer-based architecture designed to tackle structural chord recognition (e.g., triads, bass, sevenths) for large vocabularies.
ChordFormer outperforms state-of-the-art models, achieving a 2% improvement in frame-wise accuracy and a 6% increase in class-wise accuracy on large-vocabulary chord datasets.
- Score: 1.2187048691454239
- License:
- Abstract: Chord recognition serves as a critical task in music information retrieval due to the abstract and descriptive nature of chords in music analysis. While audio chord recognition systems have achieved significant accuracy for small vocabularies (e.g., major/minor chords), large-vocabulary chord recognition remains a challenging problem. This complexity also arises from the inherent long-tail distribution of chords, where rare chord types are underrepresented in most datasets, leading to insufficient training samples. Effective chord recognition requires leveraging contextual information from audio sequences, yet existing models, such as combinations of convolutional neural networks, bidirectional long short-term memory networks, and bidirectional transformers, face limitations in capturing long-term dependencies and exhibit suboptimal performance on large-vocabulary chord recognition tasks. This work proposes ChordFormer, a novel conformer-based architecture designed to tackle structural chord recognition (e.g., triads, bass, sevenths) for large vocabularies. ChordFormer leverages conformer blocks that integrate convolutional neural networks with transformers, thus enabling the model to capture both local patterns and global dependencies effectively. By addressing challenges such as class imbalance through a reweighted loss function and structured chord representations, ChordFormer outperforms state-of-the-art models, achieving a 2% improvement in frame-wise accuracy and a 6% increase in class-wise accuracy on large-vocabulary chord datasets. Furthermore, ChordFormer excels in handling class imbalance, providing robust and balanced recognition across chord types. This approach bridges the gap between theoretical music knowledge and practical applications, advancing the field of large-vocabulary chord recognition.
Related papers
- CHORDONOMICON: A Dataset of 666,000 Songs and their Chord Progressions [1.8541450825478398]
Chordonomicon is a dataset of over 666,000 songs and their chord progressions, annotated with structural parts, genre, and release date.
These characteristics make the Chordonomicon an ideal testbed for exploring advanced machine learning techniques.
arXiv Detail & Related papers (2024-10-29T13:53:09Z) - GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
We propose a Generalized Structural Sparse to capture powerful relationships across modalities for pair-wise similarity learning.
The distance metric delicately encapsulates two formats of diagonal and block-diagonal terms.
Experiments on cross-modal and two extra uni-modal retrieval tasks have validated its superiority and flexibility.
arXiv Detail & Related papers (2024-10-20T03:45:50Z) - Cadence Detection in Symbolic Classical Music using Graph Neural
Networks [7.817685358710508]
We present a graph representation of symbolic scores as an intermediate means to solve the cadence detection task.
We approach cadence detection as an imbalanced node classification problem using a Graph Convolutional Network.
Our experiments suggest that graph convolution can learn non-local features that assist in cadence detection, freeing us from the need of having to devise specialized features that encode non-local context.
arXiv Detail & Related papers (2022-08-31T12:39:57Z) - Deep Neural Convolutive Matrix Factorization for Articulatory
Representation Decomposition [48.56414496900755]
This work uses a neural implementation of convolutive sparse matrix factorization to decompose the articulatory data into interpretable gestures and gestural scores.
Phoneme recognition experiments were additionally performed to show that gestural scores indeed code phonological information successfully.
arXiv Detail & Related papers (2022-04-01T14:25:19Z) - Learning Decoupling Features Through Orthogonality Regularization [55.79910376189138]
Keywords spotting (KWS) and speaker verification (SV) are two important tasks in speech applications.
We develop a two-branch deep network (KWS branch and SV branch) with the same network structure.
A novel decoupling feature learning method is proposed to push up the performance of KWS and SV simultaneously.
arXiv Detail & Related papers (2022-03-31T03:18:13Z) - Multi-Dialect Arabic Speech Recognition [0.0]
This paper presents the design and development of multi-dialect automatic speech recognition for Arabic.
Deep neural networks are becoming an effective tool to solve sequential data problems.
The proposed system achieved a 14% error rate which outperforms previous systems.
arXiv Detail & Related papers (2021-12-25T20:55:57Z) - Speech Command Recognition in Computationally Constrained Environments
with a Quadratic Self-organized Operational Layer [92.37382674655942]
We propose a network layer to enhance the speech command recognition capability of a lightweight network.
The employed method borrows the ideas of Taylor expansion and quadratic forms to construct a better representation of features in both input and hidden layers.
This richer representation results in recognition accuracy improvement as shown by extensive experiments on Google speech commands (GSC) and synthetic speech commands (SSC) datasets.
arXiv Detail & Related papers (2020-11-23T14:40:18Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach.
In this approach, we combine a bottle-neck feature extractor (BNE) with a seq2seq synthesis module.
Objective and subjective evaluations show that the proposed any-to-many approach has superior voice conversion performance in terms of both naturalness and speaker similarity.
arXiv Detail & Related papers (2020-09-06T13:01:06Z) - COALA: Co-Aligned Autoencoders for Learning Semantically Enriched Audio
Representations [32.456824945999465]
We propose a method for learning audio representations, aligning the learned latent representations of audio and associated tags.
We evaluate the quality of our embedding model, measuring its performance as a feature extractor on three different tasks.
arXiv Detail & Related papers (2020-06-15T13:17:18Z) - Audio Impairment Recognition Using a Correlation-Based Feature
Representation [85.08880949780894]
We propose a new representation of hand-crafted features that is based on the correlation of feature pairs.
We show superior performance in terms of compact feature dimensionality and improved computational speed in the test stage.
arXiv Detail & Related papers (2020-03-22T13:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.