All-Optical Photoluminescence Spectra of Nitrogen-Vacancy Ensembles in Diamond at Low Magnetic Fields
- URL: http://arxiv.org/abs/2502.11943v1
- Date: Mon, 17 Feb 2025 15:56:21 GMT
- Title: All-Optical Photoluminescence Spectra of Nitrogen-Vacancy Ensembles in Diamond at Low Magnetic Fields
- Authors: Xiechen Zheng, Jeyson Támara-Isaza, Zechuan Yin, Johannes Cremer, John W. Blanchard, Connor A. Hart, Michael Crescimanno, Paul V. Petruzzi, Matthew J. Turner, Ronald L. Walsworth,
- Abstract summary: All-optical (AO), microwave-free magnetometry using nitrogen-vacancy (NV) centers in diamond is attractive due to its broad sample compatibility and reduced experimental complexity.
In this work, we investigate room-temperature AO photoluminescence (PL) at low magnetic fields using diamonds with NV ensembles at ppm concentrations.
- Score: 0.5617572524191751
- License:
- Abstract: All-optical (AO), microwave-free magnetometry using nitrogen-vacancy (NV) centers in diamond is attractive due to its broad sample compatibility and reduced experimental complexity. In this work, we investigate room-temperature AO photoluminescence (PL) at low magnetic fields (<2 mT) using diamonds with NV ensembles at ppm concentrations. Measured AO-PL contrast features as a function of applied magnetic field magnitude and direction are correlated with near-degenerate NV electronic spin and hyperfine transitions from different NV orientations within the diamond host. Reasonable agreement is found between low-field AO-PL measurements and model-based simulations of the effects of resonant dipolar interactions between NV centers. Maximum observed AO-PL contrast depends on both NV concentration and laser illumination intensity at 532 nm. These results imply different optimal conditions for low-field AO NV sensing compared to conventional optically detected magnetic resonance (ODMR) techniques, suggesting new research and application opportunities using AO measurements with lower system complexity, size, weight, and power.
Related papers
- A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)
The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.
We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Master equation-based model for infrared-based magnetometry with nitrogen-vacancy centers in diamond cavities: a path to sub-picotesla sensitivity at sub-millimeter scales [0.0]
We develop a master-equation treatment of optically detected magnetic resonance, incorporating IR light saturation effects.
We show that our model is compatible with experiments of IR-based NV center magnetometry.
We uncover the potential to achieve sensitivities in the order of sub-pico tesla, even for sub-millimeter scales.
arXiv Detail & Related papers (2024-07-08T03:01:31Z) - Optically Detected Magnetic Resonance of Nitrogen-Vacancy Centers in Diamond under Weak Laser Excitation [7.515997923464793]
We study optical detected magnetic resonance of NV-center ensembles under weak 532-nm laser excitation.
Results are important for understanding and designing NV-based quantum sensing in light-sensitive applications.
arXiv Detail & Related papers (2023-08-25T12:47:48Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers [58.720142291102135]
Solid state defects in diamond make promising quantum sensors with high sensitivity andtemporal resolution.
Inhomogeneous broadening and drive amplitude variations have differing impacts on the sensitivity depending on the sensing scheme used.
We numerically investigate and compare the predicted sensitivity of schemes based on continuous-wave (CW) optically detected magnetic resonance (ODMR) spectroscopy, pi-pulse ODMR and Ramsey interferometry.
arXiv Detail & Related papers (2021-09-27T13:05:23Z) - Magnetic-Field-Dependent Stimulated Emission from Nitrogen-Vacancy
Centres in Diamond [0.0]
Negatively charged nitrogen-vacancy centres in diamond are promising quantum magnetic field sensors.
Laser threshold magnetometry has been a theoretical approach for the improvement of NV-centre ensemble sensitivity.
We use a macroscopic high-finesse laser cavity containing a highly NV-doped and low absorbing diamond gain medium that is pumped at 532nm and resonantly seeded at 710nm.
arXiv Detail & Related papers (2021-09-10T18:48:00Z) - Low temperature photo-physics of single NV centers in diamond [43.55994393060723]
We investigate the magnetic field dependent photo-physics of Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions.
We observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NV's ground state spin.
Our results offer new insights into the structure of the NVs' excited states and a new tool for their effective characterization.
arXiv Detail & Related papers (2021-05-17T18:00:02Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Absorption-Based Diamond Spin Microscopy on a Plasmonic Quantum
Metasurface [0.0]
Nitrogen vacancy (NV) centers in diamond have emerged as a leading quantum sensor platform.
"Plasmonic quantum sensing metasurface" (PQSM) combines localized surface plasmon polariton resonances with long-range Rayleigh-Wood anomaly modes.
arXiv Detail & Related papers (2020-11-10T04:20:27Z) - Cross-relaxation studies with optically detected magnetic resonances in
nitrogen-vacancy centers in diamond in an external magnetic field [0.0]
Cross-relaxation between nitrogen-vacancy centers and substitutional nitrogen in a diamond crystal was studied.
Optically detected magnetic resonance signals (ODMR) can be used to measure these signals successfully.
arXiv Detail & Related papers (2020-07-01T13:23:22Z) - Nitrogen-vacancy defect emission spectra in the vicinity of an
adjustable silver mirror [62.997667081978825]
Optical emitters of quantum radiation in the solid state are important building blocks for emerging technologies.
We experimentally study the emission spectrum of an ensemble of nitrogen-vacancy defects implanted around 8nm below the planar diamond surface.
arXiv Detail & Related papers (2020-03-31T10:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.