Diffusion-Sharpening: Fine-tuning Diffusion Models with Denoising Trajectory Sharpening
- URL: http://arxiv.org/abs/2502.12146v1
- Date: Mon, 17 Feb 2025 18:57:26 GMT
- Title: Diffusion-Sharpening: Fine-tuning Diffusion Models with Denoising Trajectory Sharpening
- Authors: Ye Tian, Ling Yang, Xinchen Zhang, Yunhai Tong, Mengdi Wang, Bin Cui,
- Abstract summary: Diffusion-Sharpening is a fine-tuning approach that enhances downstream alignment by optimizing sampling trajectories.
Our method demonstrates superior training efficiency with faster convergence, and best inference efficiency without requiring additional NFEs.
- Score: 56.99266993852532
- License:
- Abstract: We propose Diffusion-Sharpening, a fine-tuning approach that enhances downstream alignment by optimizing sampling trajectories. Existing RL-based fine-tuning methods focus on single training timesteps and neglect trajectory-level alignment, while recent sampling trajectory optimization methods incur significant inference NFE costs. Diffusion-Sharpening overcomes this by using a path integral framework to select optimal trajectories during training, leveraging reward feedback, and amortizing inference costs. Our method demonstrates superior training efficiency with faster convergence, and best inference efficiency without requiring additional NFEs. Extensive experiments show that Diffusion-Sharpening outperforms RL-based fine-tuning methods (e.g., Diffusion-DPO) and sampling trajectory optimization methods (e.g., Inference Scaling) across diverse metrics including text alignment, compositional capabilities, and human preferences, offering a scalable and efficient solution for future diffusion model fine-tuning. Code: https://github.com/Gen-Verse/Diffusion-Sharpening
Related papers
- Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.
Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
We propose an optimization approach, dubbed Demon, to guide the denoising process at inference time without backpropagation through reward functions or model retraining.
Our approach works by controlling noise distribution in denoising steps to concentrate density on regions corresponding to high rewards through optimization.
To the best of our knowledge, the proposed approach is the first inference-time, backpropagation-free preference alignment method for diffusion models.
arXiv Detail & Related papers (2024-10-08T07:33:49Z) - Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation [49.49868273653921]
Diffusion models are promising for joint trajectory prediction and controllable generation in autonomous driving.
We introduce Optimal Gaussian Diffusion (OGD) and Estimated Clean Manifold (ECM) Guidance.
Our methodology streamlines the generative process, enabling practical applications with reduced computational overhead.
arXiv Detail & Related papers (2024-08-01T17:59:59Z) - FIND: Fine-tuning Initial Noise Distribution with Policy Optimization for Diffusion Models [10.969811500333755]
We introduce a Fine-tuning Initial Noise Distribution (FIND) framework with policy optimization.
Our method achieves 10 times faster than the SOTA approach.
arXiv Detail & Related papers (2024-07-28T10:07:55Z) - Diffusion Models as Optimizers for Efficient Planning in Offline RL [47.0835433289033]
Diffusion models have shown strong competitiveness in offline reinforcement learning tasks.
We propose a faster autoregressive model to handle the generation of feasible trajectories.
This allows us to achieve more efficient planning without sacrificing capability.
arXiv Detail & Related papers (2024-07-23T03:00:01Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous Driving and Zero-Shot Instruction Following [21.81411085058986]
Reward-gradient guided denoising generates trajectories that maximize both a differentiable reward function and the likelihood under the data distribution captured by a diffusion model.
We propose DiffusionES, a method that combines gradient-free optimization with trajectory denoising.
We show that DiffusionES achieves state-of-the-art performance on nuPlan, an established closed-loop planning benchmark for autonomous driving.
arXiv Detail & Related papers (2024-02-09T17:18:33Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.