VoLUT: Efficient Volumetric streaming enhanced by LUT-based super-resolution
- URL: http://arxiv.org/abs/2502.12151v1
- Date: Mon, 17 Feb 2025 18:59:03 GMT
- Title: VoLUT: Efficient Volumetric streaming enhanced by LUT-based super-resolution
- Authors: Chendong Wang, Anlan Zhang, Yifan Yang, Lili Qiu, Yuqing Yang, Xinyang Jiang, Feng Qian, Suman Banerjee,
- Abstract summary: 3D volumetric video provides immersive experience and is gaining traction in digital media.
Streaming of volumetric video content poses significant challenges due to the high data bandwidth requirement.
A natural approach to mitigate the bandwidth issue is to reduce the volumetric video's data rate by downsampling the content prior to transmission.
We have developed VoLUT with a new SR algorithm specifically designed for volumetric content.
- Score: 25.1343065912991
- License:
- Abstract: 3D volumetric video provides immersive experience and is gaining traction in digital media. Despite its rising popularity, the streaming of volumetric video content poses significant challenges due to the high data bandwidth requirement. A natural approach to mitigate the bandwidth issue is to reduce the volumetric video's data rate by downsampling the content prior to transmission. The video can then be upsampled at the receiver's end using a super-resolution (SR) algorithm to reconstruct the high-resolution details. While super-resolution techniques have been extensively explored and advanced for 2D video content, there is limited work on SR algorithms tailored for volumetric videos. To address this gap and the growing need for efficient volumetric video streaming, we have developed VoLUT with a new SR algorithm specifically designed for volumetric content. Our algorithm uniquely harnesses the power of lookup tables (LUTs) to facilitate the efficient and accurate upscaling of low-resolution volumetric data. The use of LUTs enables our algorithm to quickly reference precomputed high-resolution values, thereby significantly reducing the computational complexity and time required for upscaling. We further apply adaptive video bit rate algorithm (ABR) to dynamically determine the downsampling rate according to the network condition and stream the selected video rate to the receiver. Compared to related work, VoLUT is the first to enable high-quality 3D SR on commodity mobile devices at line-rate. Our evaluation shows VoLUT can reduce bandwidth usage by 70% , boost QoE by 36.7% for volumetric video streaming and achieve 3D SR speed-up with no quality compromise.
Related papers
- RL-RC-DoT: A Block-level RL agent for Task-Aware Video Compression [68.31184784672227]
In modern applications such as autonomous driving, an overwhelming majority of videos serve as input for AI systems performing tasks.
It is therefore useful to optimize the encoder for a downstream task instead of for image quality.
Here, we address this challenge by controlling the Quantization Parameters (QPs) at the macro-block level to optimize the downstream task.
arXiv Detail & Related papers (2025-01-21T15:36:08Z) - Standard compliant video coding using low complexity, switchable neural wrappers [8.149130379436759]
We propose a new framework featuring standard compatibility, high performance, and low decoding complexity.
We employ a set of jointly optimized neural pre- and post-processors, wrapping a standard video, to encode videos at different resolutions.
We design a low complexity neural post-processor architecture that can handle different upsampling ratios.
arXiv Detail & Related papers (2024-07-10T06:36:45Z) - Super Efficient Neural Network for Compression Artifacts Reduction and
Super Resolution [2.0762623979470205]
We propose a lightweight convolutional neural network (CNN)-based algorithm which simultaneously performs artifacts reduction and super resolution.
The output shows a 4-6 increase in video multi-method assessment fusion (VMAF) score compared to traditional upscaling approaches.
arXiv Detail & Related papers (2024-01-26T04:11:14Z) - Towards High-Quality and Efficient Video Super-Resolution via
Spatial-Temporal Data Overfitting [27.302681897961588]
Deep convolutional neural networks (DNNs) are widely used in various fields of computer vision.
We propose a novel method for high-quality and efficient video resolution upscaling tasks.
We deploy our models on an off-the-shelf mobile phone, and experimental results show that our method achieves real-time video super-resolution with high video quality.
arXiv Detail & Related papers (2023-03-15T02:40:02Z) - Towards Interpretable Video Super-Resolution via Alternating
Optimization [115.85296325037565]
We study a practical space-time video super-resolution (STVSR) problem which aims at generating a high-framerate high-resolution sharp video from a low-framerate blurry video.
We propose an interpretable STVSR framework by leveraging both model-based and learning-based methods.
arXiv Detail & Related papers (2022-07-21T21:34:05Z) - Deep Parametric 3D Filters for Joint Video Denoising and Illumination
Enhancement in Video Super Resolution [96.89588203312451]
This paper presents a new parametric representation called Deep Parametric 3D Filters (DP3DF)
DP3DF incorporates local information to enable simultaneous denoising, illumination enhancement, and SR efficiently in a single encoder-and-decoder network.
Also, a dynamic residual frame is jointly learned with the DP3DF via a shared backbone to further boost the SR quality.
arXiv Detail & Related papers (2022-07-05T03:57:25Z) - Neural Vocoder is All You Need for Speech Super-resolution [56.84715616516612]
Speech super-resolution (SR) is a task to increase speech sampling rate by generating high-frequency components.
Existing speech SR methods are trained in constrained experimental settings, such as a fixed upsampling ratio.
We propose a neural vocoder based speech super-resolution method (NVSR) that can handle a variety of input resolution and upsampling ratios.
arXiv Detail & Related papers (2022-03-28T17:51:00Z) - Self-Conditioned Probabilistic Learning of Video Rescaling [70.10092286301997]
We propose a self-conditioned probabilistic framework for video rescaling to learn the paired downscaling and upscaling procedures simultaneously.
We decrease the entropy of the information lost in the downscaling by maximizing its conditioned probability on the strong spatial-temporal prior information.
We extend the framework to a lossy video compression system, in which a gradient estimator for non-differential industrial lossy codecs is proposed.
arXiv Detail & Related papers (2021-07-24T15:57:15Z) - Multi-Density Attention Network for Loop Filtering in Video Compression [9.322800480045336]
We propose a on-line scaling based multi-density attention network for loop filtering in video compression.
Experimental results show that 10.18% bit-rate reduction at the same video quality can be achieved over the latest Versatile Video Coding (VVC) standard.
arXiv Detail & Related papers (2021-04-08T05:46:38Z) - Deep Space-Time Video Upsampling Networks [47.62807427163614]
Video super-resolution (VSR) and frame (FI) are traditional computer vision problems.
We propose an end-to-end framework for the space-time video upsampling by efficiently merging VSR and FI into a joint framework.
Results show better results both quantitatively and qualitatively, while reducing the time (x7 faster) and the number of parameters (30%) compared to baselines.
arXiv Detail & Related papers (2020-04-06T07:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.