Scalable and Robust Physics-Informed Graph Neural Networks for Water Distribution Systems
- URL: http://arxiv.org/abs/2502.12164v1
- Date: Tue, 11 Feb 2025 13:38:14 GMT
- Title: Scalable and Robust Physics-Informed Graph Neural Networks for Water Distribution Systems
- Authors: Inaam Ashraf, André Artelt, Barbara Hammer,
- Abstract summary: Water distribution systems (WDSs) are an important part of critical infrastructure becoming increasingly significant in the face of climate change and urban growth.<n>We propose a robust and scalable surrogate deep learning (DL) model to enable efficient planning, expansion, and rehabilitation of WDSs.
- Score: 5.067313477651394
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Water distribution systems (WDSs) are an important part of critical infrastructure becoming increasingly significant in the face of climate change and urban population growth. We propose a robust and scalable surrogate deep learning (DL) model to enable efficient planning, expansion, and rehabilitation of WDSs. Our approach incorporates an improved graph neural network architecture, an adapted physics-informed algorithm, an innovative training scheme, and a physics-preserving data normalization method. Evaluation results on a number of WDSs demonstrate that our model outperforms the current state-of-the-art DL model. Moreover, our method allows us to scale the model to bigger and more realistic WDSs. Furthermore, our approach makes the model more robust to out-of-distribution input features (demands, pipe diameters). Hence, our proposed method constitutes a significant step towards bridging the simulation-to-real gap in the use of artificial intelligence for WDSs.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
This study introduces a universal learning strategy for neural network PDEs, named Systematic Model Augmentation for Robust Training.
By focusing on challenging and improving the model's weaknesses, SMART reduces generalization error during training under data-scarce conditions.
arXiv Detail & Related papers (2024-09-04T04:18:25Z) - Physics-Informed Graph Neural Networks for Water Distribution Systems [3.9675504428227457]
Water distribution systems (WDS) are an integral part of critical infrastructure which is pivotal to urban development.
We propose a physics-informed deep learning (DL) model, for hydraulic state estimation in WDS.
Our model uses hydraulic principles to infer two additional hydraulic state features in the process of reconstructing the available ground truth feature.
arXiv Detail & Related papers (2024-03-27T13:51:26Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
We introduce a comprehensive data-driven framework aimed at enhancing the modeling of physical systems.
As a demonstrative application, we pursue the modeling of cathodic electrophoretic deposition (EPD), commonly known as e-coating.
arXiv Detail & Related papers (2024-01-16T14:58:21Z) - Analyzing and Improving the Training Dynamics of Diffusion Models [36.37845647984578]
We identify and rectify several causes for uneven and ineffective training in the popular ADM diffusion model architecture.
We find that systematic application of this philosophy eliminates the observed drifts and imbalances, resulting in considerably better networks at equal computational complexity.
arXiv Detail & Related papers (2023-12-05T11:55:47Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - Delta Schema Network in Model-based Reinforcement Learning [125.99533416395765]
This work is devoted to unresolved problems of Artificial General Intelligence - the inefficiency of transfer learning.
We are expanding the schema networks method which allows to extract the logical relationships between objects and actions from the environment data.
We present algorithms for training a Delta Network (DSN), predicting future states of the environment and planning actions that will lead to positive reward.
arXiv Detail & Related papers (2020-06-17T15:58:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.